New Zealand Oceanographic Institute

Memoir No. 55

OCEANIC CIRCULATION OFF THE EAST COAST OF NEW ZEALAND

by

R.A. HEATH

1975

NEW ZEALAND

DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH

OCEANIC CIRCULATION OFF THE EAST COAST OF NEW ZEALAND

by

R.A. Heath

New Zealand Oceanographic Institute

Memoir 55

Wellington 1975

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Citation according to "World List of Scientific Periodicals" (4th edn)

Mem. N.Z. oceanogr. Inst. 55

ISSN 0083-7903

Received for Publication : August 1971

Crown Copyright 1975

ISSN 0083-7903

A.R. SHEARER, GOVERNMENT PRINTER, WELLINGTON, NEW ZEALAND- 1975

CONTENTS

					Page
Abstract	12.20	355	52		7
Introduction	++.				7
East Cape Current	4.4		12	* *	9
East Auckland Curre	nt			**	9
Southland Current		1.44			9
D'Urville Current	7.7			1220	9
Observations		**	÷.		10
Collection of Data		11	22	220	13
East Cape Current Near	East Cap	De	**	4.4	13
The Geostrophic Cu	rrents Nea	r East Cape	1.5		13
The Theoretical Inf	luence of t	he Bottom To	pography on	the	19
Comparisons of the	Theoretics	al Influence o	f the Bottom		10
Topography Near	East Cape	e with the Geo	ostrophic Cu	rrents	30
East Cape Current Sout	h of East	Cape		2.2	33
The Anticyclonic E	ddy in the	East Cape Cu	irrent	**	33
Spatial Modification	of Tempe	rature and Sal	inity Charac	teristics	
of the East Cape	and South	land Currents	••		39
The Vertical Structu	ire of the (Currents off th	ne East Coas	t,	10
of New Zealand			**		40
The Volume Transpo	ort Around	East Cape		**	43
The Volume Transpo of New Zealand b	ort in the C Detween Ea	Currents off th st Cape and 1	ie East Coas Banks Penins	t sula	46
Subtropical Convergence	е				46
Structure of the Sub	tropical Co	onvergence ac	cross the		
Chatham Rise	**	**	++	22	48
Seasonal Variation	in the Posi	tion of the Su	ıbtropical		
Convergence ove	r the Chath	nam Rise		**	49
The Subtropical Con	nvergence	East of the C	hatham Islan	ds	50
The Subtropical Con	nvergence	North of Bank	s Peninsula		51
The Northern Limit	of the Sub	tropical Conv	ergence East	;	50
of New Zealand	**		**	**	53
Temperature and Salinit	y Variatio	ons	12	••	54
Seasonal Changes					54
Spatial Variations of	of Surface ?	Cemperature a	nd Salinity		55
Hydrology of the Water	Between l	Banks Penin	sula and		50
Cape Palliser	••	++	• •	••	56
Water Types on the	North Can	terbury Coast		**	56
Hydrology of Pegas	us Bay	5770	22	11	56
Hydrology off Kaiko	oura			2.2	56
Mechanisms Genera North Canterbury	ting the No Coast	on-Seasonal E	ffects on the		57
Periodicity of the In	nflux of Wa	rm Water Tow	ards Kaikour	·a. • •	57
The Mechanism Gen	erating the	e Eddies whic	h Travel		
Towards Kaikour	a		100	22	59
Influence of Local	Winds on th	ne Hydrology	of the Water		
Along the North (Canterbury	Coast			59

Hydrology of the Water	Along the	East Coast	of the		
North Island				1.000	60
Conclusion					60
Acknowledgments					62
References					62
Appendix I	28.40				65
Appendix II	++				66
Appendix III	4.4				94

FIGURES

				Page
1.	Ocean Currents Around New Zealand.	1.4.2		8
2.	Station positions; September/October 1967.	22.2	10.00	10
3.	Station positions; November/December 1968.			11
4.	Station positions; February/March 1969.			12
5.	Contours (dyn. cm.) of the geopotential topogra	phy of the		
	sea surface relative to 500 dbars.		222	13
6.	Contours (dyn. cm.) of the geopotential topogra	phy of the		
	sea surface relative to 1000 dbars	- ÷		13
7.	Contours (dyn. cm.) of the geopotential topogra	phy of the		
•	sea surface relative to 1500 dbars.	(+ +)	24.4.5	14
8.	Isotherms ($^{\circ}$ C) at a depth of 200 m.	0.5.50	1.1	14
9.	Depth (m) of the upper mixed layer.	**		15
10.	Isotherms ($^{\circ}$ C) of the sea surface.		(22)	16
11.	Isohalines (‰) at the sea surface.		2422	17
12.	Contours (dyn. cm.) of the sea surface relative	to a depth of 5	600 dbars.	18
13.	Contours (dyn. cm.) of the sea surface relative	to a depth of 1	000 dbars.	19
14.	Contours (dyn. cm.) of the sea surface relative	to a depth of 1	500 dbars.	20
15.	The bathymetry near East Cape.	5.5 C	0+.*C	21
16.	Latitudinal and longitudinal variation of the st	reamline $\psi = 0$.		22
17.	Sectional salinity plot along the axis of the Ea	ast Cape Curren	nt System.	23
18.	Cross-sectional salinity profile off the East C	oast of the Nort	th Island.	24
19.	Isohalines (‰) on the surface minimum salinit	y		25
20.	Plots of relative geostrophic current speeds (c	$m \operatorname{sec} -1$) with d	depth (m).	26
21.	Temperature ($^{\circ}$ C) / Salinity (‰) curves for Stns	s D829, D837, 1	0840,	
	D848, D860.	100	366	27
22.	Cross-sectional plot of sigma-T.	**		28
23.	Changes in the dynamic height anomaly differe	nce with depth.	0.5550	29
24.	Cross-sectional plot of sigma-T north from Eas	st Cape.		30
25.	Geostrophic Volume Transports; February/Mar	ch 1969.	**	31
26.	Geostrophic Volume Transports; September/Oc	tober 1967.		32
27.	Meridional Salinity (%) cross-section across t	he Chatham Ris	se: April 1967.	33
28.	Meridional Salinity (%) eross-section across th	he Chatham Ris	Se:	
	September/October 1967.		2443	33
29.	Changes in the dynamic height anomaly differe	nces with dept	h off the	
	east coast.	68		34
30	Variations of sigma-T with depth off the east of	coast		35

31.	Meridional salinity (%) east of the Chatham Islan	ds.	**	36
32.	Meridional salinity (‰) across the Chatham Rise.		**	37
33.	Isohalines (‰) at the sea surface.		**	38
34.	Isohalines (‰) of maximum near-surface salinity.		**	39
35.	Dynamic height anomaly contours at the surface re	elative		
	to 400 dbars.	£2	**	40
36.	Cross-sectional salinity profile extending east fro	m the South	Island.	41
37.	Isotherms ($^{\circ}$ C) at a depth of 200 m.		**	42
38.	Cross-sectional salinity (%) plot at latitude $41^{\circ}30$	D'S.	2.2.C	43
39.	Temperature (°C)/Salinity (‰) curves for Stns D6	14, D615, D	679,	
	D690, D846.	57	7.7	44
40.	Variation of temperature ($^{\circ}C$) with depth (m) at sta	tions occup	ied in the	
	East Cape Current.	68	**	44
41.	Monthly average surface temperatures.		++	45
42.	Highest surface temperature ($^{\circ}$ C).	×.+	27.	47
43.	Approximate tracks of M.V. Hawea and T.E.V. Mao	ri.	+ +	48
44.	Sea surface temperature distribution; April 1969	2	(***)	50
45.	Sea surface temperature distribution; November 19	69.	**	51
46.	Surface temperature records off the East Coast of	New Zealan	d.	51
47.	Seasonal variation of surface salinity and tempera	ture.		52
48.	Bathythermograph records from Stn G142.			53
49.	Salinity / Depth curve of Stn G142.		· · ·	54
50.	Variations with time of the temperature at the surf	ace and 100	m, and the	
	salinity at the surface, 100 m and 200 m.		**:	54
51.	Surface temperature records near East Cape.			55
52.	Seasonal surface temperature variations of cool wa	ater near Ea	st Cape.	55
53.	Bathythermograms collected near East Cape.		**	56
54.	Cross-sectional salinity profile across the Ranfur	ly Bank.	4.4	58
55.	Cross-sectional temperature profile across the Ran	nfurly Bank		58

TABLES

					Page
1.	Latitudinal and longitudinal vari	ations on a	tran sport		
	streamline near East Cape.		50	222	22
2.	Position of the large anticyclor	nic eddy in	the head of		
	the Hikurangi Trench.	0.52		**	24
3.	Regression analysis of the dynamic the sea surface relative to var	nic height a ious depths	nomalies at on the		
	temperature at a depth of 200 n	n. **		**	27
4.	Station data for the Subtropical (Convergence	e East of New	Zealand.	34
5.	Station data for the bottom of the	tongue on	the East Cap	е	
	Current System.		••	4.4	46
6.	Linear regression analysis of the	e sea surfac	e salinity on	the	
	sea surface temperature off th	e East Coa	st of New Zea	aland.	52

c) () ()

OCEANIC CIRCULATION OFF THE EAST COAST OF NEW ZEALAND

by

R.A. Heath

ABSTRACT

The oceanic circulation off the east coast of New Zealand south of East Cape is examined mainly by the geostrophic method, other techniques being used where the geostrophic method is not applicable.

The East Cape Current is formed by part of the Subtropical eastward-flowing East Auckland Current being diverted southwards around East Cape by the bottom topography of the Ranfurly Bank, East Cape Ridge and Kermadec Trench. At about $41\frac{1}{2}^{\circ}$ S, 178 ^oE, the East Cape Current turns east then north, forming an anticyclonic eddy which has a radius of about 50-100 km and is developed to a depth of at least 1500 m.

Subtropical Water over the continental shelf and upper part of the continental slope off the south-east coast of the South Island meets the less saline Subantarctic Water further offshore on the slope in the Southland Front, a zone where the isolines of salinity, temperature and density slope downwards to the west. The water in this zone of large horizontal gradients, together with the coastal water further inshore, moves northwards as the Southland Current. The deeper water of the Southland Current is brought towards the surface in passing northwards through the Mernoo Gap at the western end of the Chatham Rise. Thus, at the surface the Southland Current is recognised south of the Rise by warm, saline water and north of the Rise by cool, low salinity water. Near Kaikoura part of the Southland Current turns offshore while the remainder continues northwards across Cook Strait and along the east coast of the North Island, before turning offshore near Cape Turnagain to combine with the East Cape Current. The offshore transport of the Southland Current near Kaikoura is increased when a small eddy, cast off from the East Cape Current, is present near Kaikoura. A new eddy is found about every two months and its formation appears to be closely linked with the circulation off the east coast of Australia.

In summer the current speeds off the east coast decrease with depth down to at least 1000 m whereas in winter they are nearly constant down to 300 m and decrease below this depth. This seasonal difference appears to be related to the development of the summer thermocline.

The Subtropical Convergence is situated along the Chatham Rise, which inhibits the southward movement of the East Cape Current. The seasonal change in the structure of this current is likely to be responsible for the slight southward movement of the Convergence which occurs in winter.

INTRODUCTION

Three currents* have been named off the east coast of New Zealand, East Cape, Southland and East Auckland Currents, but previous studies have considered these as separate entities while neglecting the continuity between them. The D'Urville Current, which enters Cook Strait from the west, also has some influence on the East Coast circulation. In this paper an examination is made of the East Cape Current followed by an analysis of the interaction between the East Cape, Southland and D'Urville Currents. The geographical extent of these three currents is shown in Fig. 1. An account of previous work on the individual currents follows.

^{*}The term Canterbury Current has been used to define the northwards coastal flow north of Banks Peninsula, but this flow has been shown to be continuous with the Southland Current, and it has been suggested (Heath 1972a) that the term Canterbury Current be withdrawn and the term Southland Current be used for all the northward flow along the east coast of New Zealand.

Fig. 1. Ocean currents around New Zealand as shown by Heath (1973).

EAST CAPE CURRENT

The presence of a surface tongue of Subtropical Water extending southwards along the east coast of the North Island was first reported by Fleming (1952) who assumed this feature indicated a southward movement of waters which he named the East Cape Current. Subsequent work off the east coast of New Zealand (Sdubbundhit and Gilmour 1964; Garner 1967a; Heath 1968) showed that seawards of the 1000 m isobath (approx.) the geostrophic current flows southwards down the east coast of the North Island to approximately the latitude of Cape Palliser where it turns north-eastwards.

The exact connection between the East Cape Current and the warm surface tongue has not previously been examined but it would be expected that the geostrophic currents create a warm tongue in the vertical water column by adjusting the mass field.

The possible origin of the water in the East Cape Current has been examined by Ridgway (1970a) who concluded that (anticyclonic) eddies are shed off from the main eastward flow of the East Auckland Current (Barker and Kibblewhite 1965) past East Cape.

EAST AUCKLAND CURRENT

Brodie (1960) found a southeasterly surface drift along the east coast of the North Island between North Cape and East Cape and named it the East Auckland Current. The surface geostrophic currents relative to 1000 decibars also show a general easterly movement in this area (Garner 1969).

SOUTHLAND CURRENT

Garner's (1961) view of the Southland Current as a branch of the 'Tasman Current' which flows eastwards through Foveaux Strait into the surface water off the Otago coast was supported by Brodie (1960) who found that drift cards released on the west coast of the South Island, south of latitude 45° S, were recovered on the east coast of the South Island. Burling (1961) suggested that the Southland Current originates southwest of Stewart Island and consists mainly of water from the Subtropical Convergence region with some admixture of Australasian Subantarctic Water. Thus water which passes through a wide range of latitude west of New Zealand may flow northwards in the Southland Current.

The mainly subtropical nature of the Southland Current in Foveaux Strait has been confirmed by Houtman (1966). Jillett (1969) showed that off the Otago Peninsula, the Subtropical Water in the Southland Current is located over the continental shelf and slope, bounded on the coastal side by low salinity shallow coastal water and on the seaward side by low salinity Subantarctic Surface Water.

The continuity of flow in the Southland Current on the east coast of New Zealand has been studied by Heath (1972a) whose analysis can be summarised as follows. The warm Subtropical Water on the continental shelf and upper part of the continental slope south of latitude 41°30'S on the east coast of the South Island, New Zealand meets the cooler less saline Subantarctic Water in the Southland Front. Isolines slope sharply downwards towards the west in the Southland Front indicating that both the Subtropical and Subantarctic Water flows northwards as the Southland Current. South of Banks Peninsula the Southland Current is recognised at the surface by mainly warm, saline Subtropical Water but, in its passage northward through the western side of the Mernoo Gap, these characteristics are altered by cool, low-salinity Subantarctic Water being brought closer to the surface. North of Banks Peninsula the Southland Current is most easily recognised by cool low salinity water. Where this cool, low salinity water meets the warmer more saline water offshore, which is derived from the East Cape Current, the northern extension of the Subtropical Convergence is formed. The Southland Front extends northwards through the western side of the Mernoo Gap towards Kaikoura. The Southland Current branches near Kaikoura - one component meanders eastwards to combine with the East Cape Current; a second component diverges north-eastwards immediately north of Kaikoura sweeping across the southern end of Cook Strait and continues northward along the east coast of the North Island; a further component flows northwards along the coast and enters the southwestern side of Cook Strait around Cape Campbell. The cool, low salinity water entering Cook Strait near Cape Campbell is mainly confined to the continental shelf. This water mixes with both the warmer, more saline surface and sub-surface Subtropical Water of the D'Urville Current which flows into Cook Strait from the north, and with the water in the Cook Strait Canyon which has its origin in the East Cape Current (Heath 1971). Mixed water derived from all three currents travels eastwards across Cook Strait and around Cape Palliser to meet the water of the Southland Current that has travelled north-eastwards from near Cape Campbell. In its passage northwards the water in the eastern margin of the Southland Current continually mixes with the water in the western margin of the East Cape Current and the transport of the Southland Current is generally offshore near Cape Turnagain (Heath 1972a).

D'URVILLE CURRENT

Brodie (1960) showed that there was a general surface drift of water from the west coast of the South Island into northern Cook Strait which he named the D'Urville Current. Heath (1969) found that the maximum average speed along drift card trajectories in the D'Urville Current was three-quarters of a knot (0.39 m s^{-1}) .

The present analysis is based mainly on temperature/salinity/depth data collected on three separate hydrological cruises. Some of these data have already been used in analyses of different features of the circulation (e.g. Heath 1971, 1972a, b) but the bulk are presented here with a synthesis of the circulation off the east coast.

Between 19 September and 11 October 1967, 87 hydrological stations were occupied in the region

Fig. 2. Station positions for a cruise conducted in the period September/October 1967. Bathymetry, in metres, of the survey area from Lawrence (1967) (Fig. 1 of Heath 1972a).

Fig. 3. Station positions for a cruise conducted between 26 November and 4 December 1968. The station numbers are to be prefixed by the letter D. The bathymetry, in metres, of the survey area is also shown. (Fig. 3 of Heath 1971).

from Hawke Bay to Banks Peninsula (Fig. 2). Most of these data (75 stations) have been used in an analysis of the Southland Current (Heath 1972a), the remainder (12 stations) are detailed in Appendix 11. Some data from a cruise made between 26 November and 4 December 1968 in this area between Cook Strait and Banks Peninsula (Fig. 3) have been used in analyses of the circulation and hydrology in Cook Strait (21 stations, Heath 1971) and of coastal upwelling on the north Canterbury coast (9 stations, Heath 1972b) but the bulk of the data (37 stations) is given in Appendix

2•

II. The third cruise (57 stations) was conducted between 21 February and 14 March 1969 in the area from near East Cape to Kaikoura (Fig. 4). Station circumstances are given in Appendix I and the data are given in Appendix II. These data have been supplemented by temperatures and salinity data collected by Bradford (1972) at Kaikoura. surface hydrological data from the Union Steam Ship Company vessels T.E.V. *Maori* and M.V. *Hawea* and from airborne infrared radiation thermometer surveys.

Fig. 4. Station positions for a cruise conducted between 21 February and 14 March 1969. The bathymetry, in metres, of the survey area is also shown.

COLLECTION OF DATA

Temperatures and water samples were obtained at each station by Negretti and Zambra reversing thermometers mounted on Knudsen sampling bottles. Thermometers were read after allowing time for stabilisation in an air-conditioned laboratory. Salinities were measured on board the ship with an inductive salinometer (Brown and Hamon 1961) using Copenhagen water as the standard. Bathythermograph casts to a depth of 270m, where possible, and continuous surface thermograph records supplemented these temperature/salinity serial measurements. The corrected temperatures and salinities at the observed depths, the derived values of density, sound velocity,

cumulative dynamic height anomalies and cumulative potential energy anomalies are given in Appendix II.

The airborne infrared radiation thermometer used was the model IT-3 manufactured by the Barnes Engineering Company (Instrument Division). The sensing head of this instrument was mounted in the body of a Piper *Aztec* aircraft and viewed the sea through a slot cut in the bottom of the aircraft fuselage. Flights were made at an altitude of 1000 feet. The relative accuracy of this method of measuring surface temperature is 0.5° C but drift within the instrument limits the minimum absolute accuracy to 1.2° C.

EAST CAPE CURRENT NEAR EAST CAPE

THE GEOSTROPHIC CURRENTS NEAR EAST CAPE

Between 21 February and 14 March 1969 a hydrological cruise was conducted in the region bounded by

Fig. 5. Contours (dyn. cm) of the geopotential topography of the sea surface relative to 500 dbars for data collected in February/March 1969. Arrows show flow direction. (Fig. 25 of Heath 1972c).

 $42^{\circ}30$ 'S and 36° S, longitude 179° W and the New Zealand coast (Fig. 4). The dynamic height anomaly contours at the surface relative to 500 dbars (0-500), 1000 dbars (0-1000) and 1500 dbars (0-1500) computed

Fig. 6. Contours (dyn. cm) of the geopotential topography of the sea surface relative to 1000 dbars for data collected in February/March 1969. Arrows show flow direction.

Fig. 7. Contours (dyn. cm) of the geopotential topography of the sea surface relative to 1500 dbars for data collected in February/March 1969. Arrows show flow direction.

from these observations are shown in Figs 5-7 respectively. Heath (1972c) has shown that near East Cape both the Intermediate Water (defined by the salinity minimum in the vertical water column and found at approximately 1000m near East Cape, the direction of flow being inferred from the direction of increasing salinity) and the water above it flow in the same direction with no zero level in this portion of the water column, i.e. all the water above approximately 1500 m flows in the same direction. Therefore the geostrophic currents (Figs 5-7) give a true indication of the direction of the absolute currents.

The geostrophic currents were strongly deflected towards the north in the area north of approximately $37^{\circ}S$. South of $37^{\circ}S$, near East Cape, they were deflected towards the south between East Cape and approximately longitude $179^{\circ}30'E$. East of $179^{\circ}30'E$, at the latitude of East Cape, there was a northwards movement of water from the Hikurangi Trench. Interpolated temperatures at 200m depth and upper mixed layer depths, taken from BT records, are contoured in Figs 8, 9 respectively. Both sets of contours are similar in shape to the geostrophic current streamlines, suggesting that the currents were sufficiently

Fig. 8. Isotherms (°C) at a depth of 200 m for data collected in February/March 1969. Arrows show flow direction based on higher temperatures being on the left looking downstream. (Fig. 24 of Heath 1972c).

strong to set up the mass field such that the higher temperature and greater depth of the mixed layer were to the left of the current direction. A deflection to the south around East Cape was also shown by the surface isotherms (Fig. 10) and isohalines (Fig. 11) but south of East Cape the geostrophic streamline pattern was more similar to the 200 m isotherms and mixed layer isobaths than to the surface temperatures and salinities. This is expected as the surface temperature and salinity patterns are more affected by local weather than are the sub-surface patterns.

Near East Cape, the water is too shallow for the geostrophic method to be used effectively, but as the 200 m isotherms are deflected southwards around the Cape, the southwards deflection of the East Cape Current must continue into shallow waters. Evidence for this deflection is also given by the New Zealand Pilot (Hydrographic Department 1958, p.235) which states 'outside of a depth of 100 fathoms, [between East Cape and Gable End Foreland] a constant current sets southward at a rate of one knot, but depending greatly on the force and direction of the wind.' Indirect evidence for a clockwise circulation around East Cape can be deduced from the wind conditions in this

Fig. 9. Depth (m) of the upper mixed layer deduced from bathythermograph records collected in February/ March 1969.

Fig. 10. Isotherms ($^{\circ}C$) of the sea surface for data collected in February/March 1969.

Fig. 11. Isohalines (%) at the sea surface (full lines) for data collected in February/March 1969. Contours of the near-surface maximum salinity (%) are shown by dashed lines.

17

region. The New Zealand Pilot (1958, p.234) states 'Winds on either side of the East Cape are often very different, even when strong; when the wind is westerly in the Bay of Plenty and well out to seaward of East Cape, winds southward of the Cape, within about five miles of the shore, are probably north-easterly and light'. These winds give rise to a negative curl of the wind stress and, as can be seen from Equation 7 (p.22), this results in a decrease in the sum of the curl of the mass transport and the meridional transport. This decrease is equivalent to an increase in the clockwise circulation. Dynamic height anomaly contours 0-500 dbars, 0-1000 dbars, 0-1500 dbars, derived from the two block surveys (Garner 1967a; Ridgway 1970a) are shown in Figs 12-14. The first survey was made in February/March 1963 and the second in February/ March 1965. The one year difference between these observations limits their applicability to the study of only large features of the circulation, but, within this limitation, the data confirm the 1969 circulation pattern. From this analysis it appears that the East Cape Current is derived from a clockwise flow of Subtropical Water around East Cape south of latitude

(Fig. 21 of Heath 1972c).

Fig. 13. Contours (dyn. cm) of the sea surface relative to a depth of 1000 dbars for data collected in February/ March 1963 (Garner 1967a) and February/March 1965 (Ridgway 1970a). Arrows show flow direction. (Fig. 22 of Heath 1972c).

 37° S rather than a series of eddies formed at East Cape as postulated by Ridgway (1970a).

The Theoretical Influence of the Bottom Topography on the Circúlation Near East Cape

Various authors have considered the effect that the bottom topography has on ocean currents by applying different approximations in the equations of motion. In the so-called Ekman type deflection (Ekman

3.

1923) the change of the Coriolis parameter with latitude (β) is neglected and, in the Sverdrup type deflection (Sverdrup 1961) it has been shown by Neumann (1960) that the change in the Coriolis parameter is the significant parameter. The following analysis is similar to that given by Neumann (1960) except that here the bathymetric feature of interest is the western side of the Kermadec Trench (Fig. 15) whereas he considered a symmetrical rise.

We will consider the case with the ridge alone (i.e. with no land and therefore we need not be

concerned about the boundary condition U=0 at the land boundary) to get an estimate of the deflection of the flow. The development of the basic equations has been included to allow the approximations made to be evident.

Basic Equations : The equations of motion in righthand co-ordinate system (x to the east, y to the north and Z vertically upwards) neglecting the local change of the velocity with time and the spatial accelerations are

$$f_{\rho v} + A \frac{\partial^2 u}{\partial g^2} - \rho r u - \frac{\partial p}{\partial x} = 0$$
 (1)

$$-f\rho u + A \frac{\partial^2 v}{\partial B^2} - \rho r v - \frac{\partial p}{\partial y} = 0$$
 (2)

Here A is the coefficient of eddy viscosity, and is assumed to be constant, ρ the density, p the pressure, f the Coriolis Parameter, which is negative in the Southern Hemisphere, r the horizontal coefficient of internal friction, and u and v the horizontal velocity components in the x and y directions respectively. In these equations friction has been included as both a term which is a linear function of the speed (the Guldberg and Mohn (1876) approximation) and a newtonian stress term. When equations 1 and 2 are

(Fig. 23 of Heath 1972c).

integrated vertically the newtonian stress term reduces to a surface stress (wind effect), which will be neglected, and a bottom stress, which will be computed with the Guldberg and Mohn frictional term. Therefore the choice of frictional coefficient reduces to the choice of a suitable ${\bf r}$ which includes the effect of bottom friction.

Integrating the above equations from $Z = \xi(x, y)$ to Z = D(x, y) gives

Fig. 15. The bathymetry (m) near East Cape. The positions of the lines described in the text are also shown and are labelled with the corresponding letters.

TABLE 1

The latitudinal and longitudinal variation on a transport streamline near East Cape for the boundary condition V = 0 at $x = \ell/4$. The transports used in the computation have been calculated from the product of an appropriate surface velocity and the depth at the top of the ridge (*see* note below). The depth variation from the top of the ridge to the bottom of the trench has been represented by half a cosine curve.

Latitude
$$\phi = 37^{\circ}30$$
'S

Coriolis parameter $f = -8.8 \times 10^{-5} \text{ s}^{-1}$; $\beta = 1.8 \times 10^{-11} \text{ m}^{-1} \text{ s}^{-1}$; $r = 3.3 \times 10^{-6} \text{ s}^{-1}$ (Neumann 1955)

Ļine	Depth at top of ridge (m)	ζ (m)	a(m)	Variation = & x (m)	of $V = 0$ /4 y (m)
А	500	185.4 x10 ³	2000	46 x 10 ³ +	3.45 x 107
В	1250	118.6 x 10 ³	1625	30x103	0.693 x 106
С	1250	122.3 x103	1625	31 x 10 3	0.7373 x 106
D	1250	124.2 x10 ³	1625	31 x 10 ³	$0.729 \mathrm{x} 10^{6}$
Е	1500	131.6×10^3	1687	33 x 10 ³	0.672×10^{6}

NOTE : In the computation of the quantity S the surface geostrophic zonal current was taken at 1 m s^{-1} , but in calculating the value of y, the quantity S has to be divided by the zonal mass transport and, if the zonal current is the same over the entire vertical water column, the zonal velocities cancel. This assumption of a constant current over the entire vertical water column (i.e. homogeneous ocean) was made in the first part of the analysis (*see* this page).

$$fV + \tau_{xs} - \tau_{xb} - rU - p_D \frac{\partial D}{\partial x} + p_\xi \frac{\partial \xi}{\partial x} - \frac{\partial}{\partial x} \int_D^{\xi} p d\theta = 0$$
(3)

and

$$fU + \tau_{ys} - \tau_{yb} - rV - p_D \frac{\partial D}{\partial y} + p_{\xi} \frac{\partial \xi}{\partial y} - \frac{\partial}{\partial y} \int_{D}^{\xi} p d\theta = 0$$
(4)

where

$$U = \int_{D}^{\xi} \rho u d\vartheta$$
 $V = \int_{D}^{\xi} \rho v d\vartheta$

 τ_{xs}, τ_{ys} , are the wind stress components on the sea surface and τ_{xb}, τ_{yb} , are the bottom stress components.

Fig. 16. Latitudinal (y) and longitudinal (x) variation of the streamline $\psi = 0$ for the boundary condition of no meridional flow (V = 0) at x = 2/4 for the sinusoidal approximation to the bathymetry for line C in Fig. 15.

Cross-differentiating equations 3 and 4 and subtracting after absorbing the bottom stress in the internal friction terms gives

$$= \frac{\partial \mathbf{U}}{\partial \mathbf{x}} + \frac{\partial \mathbf{V}}{\partial \mathbf{y}} + \mathbf{V} \frac{\partial \mathbf{f}}{\partial \mathbf{y}} + \frac{\partial^{T} \mathbf{x} \mathbf{s}}{\partial \mathbf{y}} - \frac{\partial^{T} \mathbf{y} \mathbf{s}}{\partial \mathbf{x}} + \mathbf{r} \left(\frac{\partial \mathbf{V}}{\partial \mathbf{x}} - \frac{\partial \mathbf{U}}{\partial \mathbf{y}}\right)$$
$$= \frac{\partial \mathbf{F} \mathbf{D}}{\partial \mathbf{y}} \frac{\partial \mathbf{D}}{\partial \mathbf{x}} - \frac{\partial \mathbf{P} \mathbf{D}}{\partial \mathbf{x}} \frac{\partial \mathbf{D}}{\partial \mathbf{y}} - \frac{\partial \mathbf{P} \mathbf{f}}{\partial \mathbf{y}} \frac{\partial \mathbf{\xi}}{\partial \mathbf{x}} + \frac{\partial \mathbf{P} \mathbf{\xi}}{\partial \mathbf{x}} \frac{\partial \mathbf{\xi}}{\partial \mathbf{y}}$$
(5)

Using the continuity equation in the form

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} = 0 \tag{6}$$

and assuming that the horizontal gradient of the atmospheric pressure is zero, equation 5 becomes

$$V_{B} + \frac{\partial^{T} \mathbf{x} \mathbf{s}}{\partial \mathbf{y}} - \frac{\partial^{T} \mathbf{y} \mathbf{s}}{\partial \mathbf{x}} + \mathbf{r} \left(\frac{\partial V}{\partial \mathbf{x}} - \frac{\partial U}{\partial \mathbf{y}} \right)$$
$$- \frac{\partial PD}{\partial \mathbf{y}} \frac{\partial D}{\partial \mathbf{x}} - \frac{\partial PD}{\partial \mathbf{x}} \frac{\partial D}{\partial \mathbf{y}}$$
(7)

where $\beta = \partial f / \partial y$ is taken as constant (the Beta-plane approximation).

For a homogeneous ocean only the barotropic mode is present. Therefore

$$\frac{\partial^{D}D}{\partial y} = \mathbf{g}\rho \quad (\frac{\partial\xi}{\partial y} - \frac{\partial D}{\partial y}) \quad \text{and} \quad \frac{\partial^{D}D}{\partial x} = \mathbf{g}\rho \quad (\frac{\partial\xi}{\partial x} - \frac{\partial D}{\partial x})$$

metres

Fig. 18. Cross-sectional salinity (%) profile in a zonal line extending from the east coast of the North Island, New Zealand at latitude 41°30'S from data collected in February/March 1969.

For the case of a homogeneous ocean and with the curl of the wind stress zero (the effect of the wind stress has been examined qualitatively on p.18), equation 7 becomes

$$\nabla \beta + r \left(\frac{\partial V}{\partial x} - \frac{\partial U}{\partial y}\right) = g \rho \left(\frac{\partial \xi}{\partial y} \frac{\partial D}{\partial x} - \frac{\partial \xi}{\partial x} \frac{\partial D}{\partial y}\right)$$
(8)

Using the continuity equation 6 a transport stream function ψ can be defined where

$$\frac{\partial \Psi}{\partial \mathbf{x}} = \mathbf{V} \qquad \qquad \frac{\partial \Psi}{\partial \mathbf{y}} = -\mathbf{U} \tag{9}$$

In the region of interest the slope of the bottom topography is greatest in the zonal direction, consequently we may assume that $\partial D/\partial y = 0$. Also, we may assume that $\partial U/\partial y = \Delta U/\Delta y \approx 0$ because the latitudinal range in which we are interested, Δy , is small (equivalent to neglecting $\partial^2 t/\partial y^2$). With these conditions after substituting for the stream function ψ , equation 8 becomes

$$\frac{\partial \psi}{\partial \mathbf{x}} \beta + \mathbf{r} \frac{\partial^2 \psi}{\partial \mathbf{x}^2} = g_{\rho} \frac{\partial \xi}{\partial \mathbf{y}} \frac{\partial D}{\partial \mathbf{x}}$$
(10)

TABLE 2

Position of the large anticyclonic eddy in the head of the Hikurangi Trench during the cruises conducted in this area.

		POSI	FION
Period	Reference	Lat. ° ' S	Long. ° E
September 1962	Sdubbundhit and Gilmour 1964	40 30	178
February- March 1963	Garner 1967a	41 30	178
April 1967	Heath 1968	42 00	179
October 1967	Heath 1972a	42 00	178
March 1969	Appendix II	41 00	179

Fig. 19. Isohalines (‰) of the surface minimum salinity for data collected in February/March 1969. The quantities shown are the decimal values less than 34.00‰.

For the case $\partial \xi / \partial y = \text{constant}$, and with the approximation of a bottom topography in the form of a sinusoidal wave

$$D(x) = D_0 + a \cos(\frac{2\pi x}{g})$$
 (11)

of which, however, only part of a wave length will be considered, equation 10 becomes

$$\frac{\partial^2 \psi}{\partial x^2} + E \frac{\partial \psi}{\partial x} = -B \frac{2\pi a}{\ell} \sin \frac{2\pi x}{\ell}$$
(12)

where

$$E = \frac{\beta}{r} \qquad B = \frac{g\rho}{r} \frac{\partial\xi}{\partial y}$$

The transport in the zonal direction at $x\,=\,0$ is U, therefore from equation 9 the stream function is seen to be of the form

$$\psi = - Jy + k(x) \tag{13}$$

where J = U and is constant.

The x dependent solution of equation 12 can be broken up into a complementary function which satisfies

$$\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + E \right) \psi = 0 \tag{14}$$

and has a solution

$$\psi = C_1 e^{-Ex} + C_2$$
(15)

and the particular solution which satisfies

$$\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} + E \right) \psi = -B \frac{2\pi a}{\ell} \sin \frac{2\pi x}{\ell}$$

and has a solution

$$\psi = C_3 \sin \frac{2\pi x}{\ell} + C_4 \cos \frac{2\pi x}{\ell}$$
(16)

where $E C_3 = \frac{2\pi}{\ell} C_4$ and $\frac{2\pi}{\ell} C_3 + E C_4 = Ba$

i.e.
$$C_4 = \frac{Ba}{E + \frac{1}{E} (\frac{2\pi}{2})^2} = M$$
 $C_3 = \frac{2\pi M}{E}$

Fig. 20. Plots of relative geostrophic current speeds (cm sec⁻¹) with depth (m) in the large anticyclonic eddy located at approximately 41°30'S, 178°00'E, for several sets of data. Stns B757, B767, B771, B772, were occupied in February/March 1963 by Garner (1967a); D613, D617 in April 1967 by Heath (1968); D658, D675, D676, D695 in October 1967 by Heath (1972a) and D847, D848, D859 in March 1967 (Appendix II).

The full solution is

$$\psi = -J_{y} + C_{3} \sin \frac{2\pi x}{\ell} + C_{4} \cos \frac{2\pi x}{\ell} + C_{1} e^{-Ex} + C_{2}$$
(17)

Boundary Conditions : The two boundary conditions of interest in the present study are V = 0 at x = 0 (i.e. no meridional velocity at the top of the ridge) and V = 0 at $x = \ell/4$ (i.e. no meridional velocity midway between the top of the ridge and the bottom of the trench with the flow crossing the ridge at an angle). Using these conditions we have for v = 0 at x = 0

$$\frac{2\pi}{\ell} C_3 = C_1 E$$

and for v = 0 at $x = \frac{\ell}{4}$

$$C_1 = -\frac{C_4 \ 2\pi}{\ell \ E} e^{\frac{E\ell}{4}}$$

Defining ψ such that $C_2 = 0$ and after substituting the values of the coefficients determined from the

TABLE 3

Regression analysis of the dynamic height anomalies (dyn. cm) at the sea surface (D) relative to various depths (H) on the temperature at a depth of 200 m (D_H = mT + c); σt , σD the standard deviations, r the regression coefficient, N the number of sets of data.

I. Data collected between 21 February and 14 March 1969 (see Appendix II).

H(m)	m dyn.cm∕ °C	C dyn.cm	σt °C	σD dyn.cm	Г	N
400	3.19	28.59	1.68	5.97	0.897	50
500	3.57	37.82	1.69	6.46	0.919	49
800	4.37	64.11	1.63	7.67	0.9308	38
1000	4.78	81.05	1.64	8.38	0.9377	36
1100	5.08	86.76	1.55	8.33	0.9448	31
1200	4.98	97.56	1.49	7.87	0.9452	29
1300	5.54	99.56	1.41	8.25	0.9453	28
1400	5.74	105.61	1.37	8.47	0.925	26
1500	5.61	116.26	1.48	9.24	0.895	26
1600	6.32	113.93	1.39	9.60	0.914	23
1700	6.36	120.51	1.39	9.87	0.896	23

II. Data collected between 25 September and 11 October 1967 (see Heath 1972a).

500	2.21	44.50	1.22	3.01	0.897	33
800	2.37	79.65	1.20	3.71	0.763	18
1000	3.42	89.72	1.19	5.53	0.737	15

boundary conditions V = 0 at x = 0 equation 17 becomes

$$\psi = -J_{Y} + M \left(\frac{2\pi}{E\ell}\right)^{2} e^{-Ex} + \frac{2\pi}{E\ell} M \sin \frac{2\pi x}{\ell} + M \cos \frac{2\pi x}{\ell}$$
(18)

and for V = 0 at $x = \ell/4$

$$p = -Jy - M \left(\frac{2\pi}{E\ell}\right) e^{\frac{E\ell}{4} - Ex} + \frac{2\pi}{E\ell} M \sin \frac{2\pi x}{\ell} + M \cos \frac{2\pi x}{\ell}$$
(19)

The physical significance of the terms in equations 18, 19 can be examined by comparing the equations obtained from equation 10 by applying different approximations.

Case l - Constant Depth Ocean : For the case of a constant depth ocean with constant zonal flow, equation 10 reduces to

$$\frac{\partial \psi}{\partial \mathbf{x}} \beta + \mathbf{r} \frac{\partial^2 \psi}{\partial \mathbf{x}^2} = 0$$

which has the solution

$$\Psi = C_1 \quad e \quad \frac{\beta x}{r} + C_2 - J \gamma \tag{20}$$

i.e.

$$V = \frac{-C_1\beta}{r} \cdot e - \frac{\beta x}{r} = V_0 \cdot e - \frac{\beta x}{r} \quad U = J$$
(21)

where $V = V_0$ at x = 0, i.e. any transport in the y direction decreases exponentially towards the east (positive x direction). The meridional transport V increases as β increases, and decreases as r increases. The rate of decay of V increases as β increases or r decreases. For $r \rightarrow 0$, $V \rightarrow 0$ i.e. there can be no meridional transport in a frictionless, rotating, constant depth ocean (*see* e.g. Neumann 1960).

Case II - Variable Depth Ocean $\beta = 0$: For the case of a variable depth ocean with $\beta = 0$, equation 12

reduces to

$$r \frac{\partial^2 \psi}{\partial x^2} = g\rho \frac{\partial \xi}{\partial y} \frac{\partial D}{\partial x} = -r\beta \frac{2\pi a}{\ell} \sin \frac{2\pi x}{\ell}$$

which has a solution

$$\psi = \frac{\operatorname{Bal}}{2\pi} \sin \frac{2\pi x}{\ell} + C_1 x + C_0 - Jy$$

$$\frac{\partial \phi}{\partial x} = \Psi = \operatorname{Ba} \cos \frac{2\pi x}{\ell} + C_1$$

i.e. for

$$V = 0$$
 at $x = \frac{\ell}{4}$

 $C_1 = 0$,

This is the Ekman type deflection. The streamlines have the same form in the horizontal plane as the bathymetry has in the vertical but are 90° out of phase.

Fig. 4.

Case III - Variable Depth Ocean r = 0: In this case equation 10 reduces to

$$\frac{\partial \psi}{\partial x}\beta = -g\rho \ \frac{\partial \xi}{\partial y} \ a \ \frac{2\pi}{\ell} \ \sin \ \frac{2\pi x}{\ell}$$

which has a solution

$$\psi = \frac{\xi \rho}{\beta} \frac{\frac{\partial \xi}{\partial y}}{\beta} a \cos \frac{2\pi x}{\ell} + C_1 = Jy$$

The meridional transport is given by

$$\frac{\partial \psi}{\partial x} = V = - \frac{Ba}{g} \frac{2\pi}{\ell} \sin \frac{2\pi x}{\ell}$$

which is zero at x = 0. The stream function is in phase with the bottom topography and is $\pi/2$ out of phase with the previous case. This is the Sverdrup type deflection.

From the above brief analysis we see that in equation 17 the exponential term arises from the interaction between the change of planetary vorticity (β) and frictional (r) terms, the sine term from the interaction between the frictional and topographic terms (the Ekman type deflection), and the cosine from the interaction between the planetary vorticity and the topographic terms (Sverdrup type deflection).

THE INFLUENCE OF THE BOTTOM TOPOGRAPHY NEAR EAST CAPE

In the region to the north of Cape Runaway (Fig. 15) the flow is mainly zonal (Figs 5-7). Therefore for the boundary condition V = 0 at x = 0, using equation 18, we have Jy is linearly related to

$$M \left(\frac{2\pi}{E\ell}\right)^2 e^{-Ex} + \frac{2\pi}{E\ell} M \sin \frac{2\pi x}{\ell} + M \cos \frac{2\pi x}{\ell}$$
$$= S = MQ$$
(22)

on a mass transport streamline. From equation 19 we have a similar relationship for the other boundary condition.

The quantity S has been computed for both boundary conditions by taking successive increments of 1 kilometre in x along five separate lines across the bottom topography found near East Cape. (Positions of the lines are shown in Fig. 15. Parameters for lines A and A^1 are the same.) Along these lines the portion of interest, the western side of the Kermadec Trench, has been approximated by the function

$$D = D_0 + a \cos \frac{2\pi x}{\ell}$$

where D is the depth, Do and a are constants on any one line, x = 0 represents the top of the East Cape Ridge or Ranfurly Bank (Fig. 15) and $x = \frac{l}{2}$ represents the bottom of the Kermadec Trench.

Latitudinal and Longitudinal Variations on a Streamline : Equation 18 may be written in the form

$$\psi = -Jy + MQ \tag{23}$$

where

$$Q = \left(\frac{2\pi}{E\ell}\right)^2 e^{-Ex} + \frac{2\pi}{E\ell} \sin \frac{2\pi x}{\ell} + \cos \frac{2\pi x}{\ell}$$

In the sinusoidal terms & corresponds to the wave length, and the amplitude of the sine and exponential terms decrease as & increases. Along a transport streamline (say $\psi = 0$) with a constant & we have

$$Jy = QM$$
 or $(y_2 - y_1) = \frac{M}{T} (Q_2 - Q_1)$ (24)

where y_2 , y_1 are latitudinal co-ordinates of the streamline at the top of the ridge and the bottom of the trench respectively. Expanding equation 24 assuming the zonal transport at the top of the ridge is given by

$$U = J = \frac{DTg}{f} \frac{\partial \xi}{\partial y} \rho$$

where D_{τ} is the depth of the water above the top of

Fig. 23. Changes in the dynamic height anomaly difference (dyn. cm.) with depth (m) between Stn pairs D831-D833 and D830-D831.

Fig. 24. Cross-sectional plot of sigma-T for a line of stations occupied north from East Cape in March 1969. The 34.5% isohaline which marks the core of the Intermediate Water is also shown. The station posions are shown in Fig. 4.

the ridge, we have

$$y_{2} - y_{1} \simeq \frac{g\rho}{r} \frac{\partial\xi}{\partial y} \frac{af}{\left[E + \frac{1}{E} \left(\frac{2\pi}{\rho}\right)^{2}\right] D_{T}} \frac{\partial\xi}{\partial y} \rho$$
(25)

$$\stackrel{\simeq}{=} \frac{\text{af } (Q_2 - Q_1)}{D_T [E + \frac{1}{E} (\frac{2\pi}{\ell})^2]}$$

On a streamline, as a, the amplitude of the bathymetry oscillation increases, so does the latitudinal variation, and, as D_{τ} the depth at the top of the ridge, increases the latitudinal variation decreases. For the case of V = 0 at x = 0 with typical values of ℓ for this region and E ($E = 0.5 \times 10^{-5}$) it is seen that because $2\pi/E \ell > 1$ the exponential term dominates; the flow is directed south by the bottom topography and the initial vorticity balance appears to be between the planetary vorticity (βv) and vorticity generated through friction (r $\partial v/\partial x$). The streamlines are deflected southward, with the latitudinal distance towards the south before the streamlines are markedly affected by the sinusoidal terms being given by

$$\binom{2\pi}{F^{g}}$$
 e ^{-Ex} = 1 i.e. 76 = 4 x 10⁵m, Dy = 6 x 10⁶m.

(Note that with \hat{k} large the exponential term will not dominate if $2\pi/E \ (< 1)$.

For the case of V = 0 at $x = \ell/4$ the exponential term is not dominant. The latitude and longitude variations on streamlines for five different bottom temperatures for this case are given in Table 1 and a streamline for line C (Fig. 15) is shown in Fig. 16.

COMPARISONS OF THE THEORETICAL INFLUENCE OF THE BOTTOM TOPOGRAPHY NEAR EAST CAPE WITH THE GEOSTROPHIC CURRENTS

Flow South of $37^{\circ}S$: The zonal geostrophic flow between Cape Runaway and East Cape south of $37^{\circ}S$ (approx.) (Figs 5, 6) satisfies the boundary condition V = 0 at the top of the Ranfurly Bank (x = 0). The deflection caused by the bottom topography from the top of the Ranfurly Bank into the Kermadec Trench is in the same sense as the observed deflection. In the theoretical case, the flow south of East Cape is approximately meridional between East Cape and Cape Kidnappers (Fig. 5) but any further comparison of the theoretical and observed streamlines is limited by the following two facts :-

Fig. 25. Geostrophic volume transports between station pairs occupied in February/March 1 ∂ 69. The value outside the brackets gives the volume transport in Sverdrups ($\approx 10^6 \,\mathrm{m^3\,sec^{-1}}$) in the direction of the arrow above the reference surface (dbars) shown within the brackets (i.e. assuming the speed of the current component perpendicular to the station pair is zero at the reference surface).

1. In the theoretical results the meridional bottom gradient was assumed to be zero, whereas the axis of the Kermadec Trench lies at a slight angle to the meridians (Fig. 15) and is limited in the south by the Chatham Rise. The Chatham Rise is situated at approximately $44^{\circ}S$ and extends in a near-zonal direction with a minimum depth of approximately 200 m.

2. South of Cape Turnagain, the Southland Current flows northwards between the east coast of New Zealand and the East Cape Current (the model does not hold in this region, the boundary condition U = 0 not being satisfied) and is eventually totally absorbed in the East Cape Current. The northwards flow of the Southland Current tends to push the East Cape Current further offshore south of Cape Turnagain.

Flow North of $37^{\circ}S$: To the north of $37^{\circ}S$ near East Cape the observed flow is in an anticlockwise direction (Figs 5-7) and some of the water which is diverted clockwise around East Cape south of $37^{\circ}S$ re-enters the general meridional flow east of longitude $179^{\circ}E$.

Fig. 26. Geostrophic volume transports between station pairs occupied in September/October 1967. The value outside the brackets gives the volume transport in Sverdrups ($\approx 10^6$ m³sec⁻¹) in the direction of the arrow above the reference surface (dbars) shown within the brackets (i.e. assuming the speed of the current component perpendicular to the station pair is zero at the reference surface).

Fig. 27. Meridional salinity (‰) cross-section across the Chatham Rise at longitude 178°50'E from data collected in April 1967. The depth scale is in metres. (Fig. 4 of Heath 1968).

The flow of the East Cape Current in the Hikurangi Trench results from the bottom topography near East Cape producing a perturbation on the general flow past East Cape. The tongue in the distribution of the hydrological parameters is created by the adjustment of the mass field to the current.

The observed flow north of $37^{\circ}S$ near East Cape cannot be explained solely by the effect of the bottom

Fig. 28. Meridional salinity (‰) cross-section across the Chatham Rise at longitude 177°00'E from data collected in September/October 1967.

topography used in the theoretical investigation (i.e. the western side of the Kermadec Trench). North of 37°S the depth decreases as the water flows eastward towards the East Cape Ridge and from the theoretical investigation a deflection of the streamline towards the north would be expected. This deflection is observed in the geostrophic currents. At the top of the East Cape Ridge north of 37°S the flow is nearly meridional and the flow satisfies approximately the boundary condition V = 0 at $x = \ell/4$. For this boundary condition (V = 0 at x = $\ell/4$) the theoretical s reason lines turn southwards at $x = \ell/4$. The observed geostrophic circulation is, however, not as simple as this although there is a southwards deflection over the Kermadec Trench (see Fig. 13). North of latitude $37^{\circ}S$ the theoretical streamlines differ from the observed geostrophic circulation. Possibly closer agreement could be obtained by considering a complex bathymetry but at present this is not warranted as the data from which the circulation (Figs 12-14) was deduced were collected in different years and thus only the broad circulation is represented.

EAST CAPE CURRENT SOUTH OF EAST CAPE

The East Cape Current flows southwards along the western side of the Hikurangi Trench and mixes on its coastal side south of approximately latitude 40° S with the Southland Current flowing in from the west (Figs 5-7). This combined current continues south and is deflected eastwards at approximately latitude 42° S. Where this deflection occurs an anticyclonic eddy is formed. Part of the water that does not recirculate in the eddy flows northward along the eastern side of the Hikurangi Trench forming the outer arm of the East Cape Current System (Figs 5-7).

Sig. 5

while the rest meanders towards the northeast (Figs 12-14). The current speeds in this meandering flow are slower than in the tongue of the East Cape Current System.

THE ANTICYCLONIC EDDY IN THE EAST CAPE CURRENT

The anticyclonic eddy formed in the tip of the tongue of the East Cape Current System has been

Source of Data	Period Collected	Longitude	Sur Salinity North limit	face Range South limit	Sur Temperate North limit	face ure Range South limit
Garner 1967b	18 February to 1 March 1963	178°20' E	35.4‰ 42°00' S	34.6‰ 43°00' S		
Heath 1968	11 to 16 April 1967	177°20' E	35.5‰ 42°25' S	34.5‰ 43°50' S	18 ° C 42°30' S	14 ° C 43°30' S
Heath 1968	11 to 16 April 1967	178°30' E	35.5‰ 42°20' S	34.6‰ 44°00'S	18 ° C 42°40' S	14.5°C 43°10' S
Heath 1972a	25 September to 11 October 1967	177°00' E	35.0‰ 43°00' S		11.5°C 43°00' S	
Ridgway (pers. comm.)	20 January to 2 February 1969	179°00' W	- 35.5‰ 42°00' S	34.4‰ 45°00' S	18°C 42°00'S	15° C 45°30' S
	22 to 26 January 1969	$174^\circ00'$ W	35.0‰ 45°00' S	34.5‰ 45°30' S	17 ° C 45°00' S	15° C 45°50' S

TABLE 4. Source of data, period of collection, and longitudinal positions of lines of hydrological stations occupied across the Subtropical Convergence east of New Zealand. The surface salinity and temperature ranges across the Convergence are also given.

noted by previous authors (Sdubbundhit and Gilmour 1964; Garner 1967a; Heath 1968, 1972a). The approximate position of the centre of this eddy found during the cruises conducted in this area are listed in Table 2. The centre of the eddy is generally found slightly to the east of the axis of the Hikurangi Trench (Fig. 5) (Table 2); this position most likely results from the Southland Current forcing the East Cape Current to the east. A longitudinal sectional salinity plot through this anticyclonic eddy is shown in Fig. 17 and a zonal cross-sectional plot in Fig. 18. The anticyclonic eddy was developed from the sea surface to bottom with isolines of salinity, temperature and density sloping downwards towards the centre of the eddy. The cool, low salinity water of the Southland Current meets the warm, saline Subtropical Water of the eddy on its western and southern sides and on these sides the slopes of the isolines are largest. At the surface the presence of the eddy is masked to some extent by mixing between the different water types and consequently it is best defined from subsurface measurements (compare Figs 8, 10). The salinity of the Intermediate Water decreases from the centre of the anticyclonic eddy outwards (Fig. 19). Garner (1967a) attributed the higher salinity in the centre of the eddy to the relatively long residence time of the water in the eddy which allows a greater amount of vertical mixing to occur. The Intermediate Water appears to mix predominantly with overlying Subtropical Water rather than with the underlying Deep Water (Garner 1967a).

Plots of the relative geostrophic current speeds with depth in the anticyclonic eddy from several sets of data collected in this area are shown in Fig. 20 [Stns B757, B767, B771, B772 February/March 1963 (Garner 1967a); Stns D613, D617 April 1967 (Heath 1968); Stns D675, D676 October 1967 (Heath 1972a); Stns D847, D848, D850 March 1969 (Appendix II]. Because a reference surface of 1500 dbars was used in drawing these plots and, because the station pairs

Fig. 29. Changes in the dynamic height anomaly differences (dyn. cm) with depth (m) for four station pairs occupied off the east coast of New Zealand at different times.

Fig. 30. Variations of sigma-T with depth at four stations occupied off the east coast of New Zealand.

were most likely not in the most intense regions of the eddy, too much emphasis should not be placed on the absolute speeds in Fig. 20.

The currents in the upper 200 m in winter (Stn pair D676, D675) are nearly constant whereas in summer the current gradient is nearly uniform in the upper 500 m; the change in structure will be elaborated on m a later section (p. 41). Better definition of the currents was achieved by closer station spacing during the September/October 1967 cruise, and this is reflected in the larger current speeds between 5 ms D676, D675 compared to the other station pairs.

Approximating the currents (Fig. 20) by a linear speed/depth relationship C = kZ + d, where C is the speed, Z the depth (positive upwards), k the slope of the speed/depth curve and d the surface speed, we can calculate the average potential and kinetic

14

energies per unit area between station pairs in the eddy. The kinetic energy per unit area of a column of water of depth Z is given by

kinetic energy
$$= -\frac{1}{2} \int_{0}^{-\frac{\alpha}{2}B} \rho (k + d)^{2} d\pi$$
$$= -\frac{1}{2} \rho \#_{B} \frac{k^{2} \#_{B}^{2}}{3} + d^{2} - dk \#_{B}$$

where ρ is the density. The potential energy in the flow relative to the homogeneous undisturbed ocean, taking the zero of potential energy at $\mathbf{Z} = -\mathbf{Z}\beta$, is given by

potential energy
$$\int_{0}^{L} \int_{-\infty}^{0} g_{B} \rho \Delta D dB dx$$
$$\int_{1}^{L} dx = L\rho f g_{B} C \frac{1}{4}$$

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-pc-pd/3.0/

where ΔD is the horizontal difference in dynamic height anomaly at length x from the centre of the eddy, i.e. $\Delta D = D_0 - ax$ where D_0 is the dynamic height anomaly at the centre of the eddy and a is a constant given by $a = D_0/L$. In these formulae the density given explicitly has been assumed to be constant.

Station

The kinetic, potential and total energies, together with the values of k, d and L used in the calculation for Stn pairs D675-D676 and D847-D850 are given below. Between Stns D675-D676 the current was uniform in the upper 200m and therefore the slope below 200 m has been used to give a current of 0.44 m s^{-1} at the surface.

Fig. 31. Meridional salinity $(\%_n)$ cross-section immediately east of the Chatham Islands at longitude 174 $^{\circ}00$ 'W from data collected in January/February 1969 by Ridgway (pers. comm.). The depth scale is in metres.

Fig. 32. Meridional salinity (‰) cross-section across the Chatham Rise at longitude 179°00'W from data collected in January/February 1969 by Ridgway (pers. comm.). The depth scale is in metres.

The range within which the energy in this eddy off the east coast falls (using the station spacings given above as radii, and the energies per unit area given above as representative of the whole eddy) and the range of energy calculated by Patzert (1969) for some eddies found near Hawaii are given below.

	Hawaiian Eddies (J)	Eddies off East Coast New Zealand (J)
Kinetic energy	$0.07 - 0.6 \times 10^{15}$	$1.5 - 1.6 \times 10^{15}$
Potential energy	$0.42 - 5.67 \times 10^{15}$	0.3 - 2.4 x 10 ¹⁶
Ratio PE/KE	5 - 40	2-10
Total energy	$0.49 - 6.27 \times 10^{15}$	$0.4 - 2.6 \ge 10^{16}$

The total kinetic and potential energies off the east coast of New Zealand were nearly a factor of ten larger than in the Hawaiian eddies (this was also the case for the average energies) but the ratios of potential to kinetic energies were much the same.

Using the value of the total energy we can now calculate the time for which a certain velocity wind would have to blow to supply this energy and hence find if the eddy could be generated by the winds in this area. The amount of energy added per unit area to the circulation from a wind blowing parallel to the ocean current is given by

d (Energy) =
$$\int_{0}^{t} \underline{V_{0}} \cdot \underline{\tau_{0}} dt$$

(Sverdrup et al 1942) where V_0 is the surface speed

Fig. 33. Isohalines (%n) at the sea surface for data collected in November/December 1968. (Fig. 8 of Heath 1971).

of the ocean, \underline{r}_0 is the wind stress at the sea surface and t is the time for which the stress acts. Taking V_0 as half the geostrophic velocity and with a surface stress of 0.6 newton m⁻² (i.e. a wind speed w of approximately 15 m s⁻¹ using $\underline{r}_0 = 2.6 \times 10^{-3} \rho' | w w$, ρ' the air density see Neumann and Pierson 1966), the time required to supply the energy would be 85 days for the eddy surveyed in October 1967 and 135 days for the eddy surveyed in March 1969, i.e. for the wind to supply the energy in this eddy it would need to blow at a speed of approximately 15 m s⁻¹ parallel to the ocean current for a period in excess of 100 days. Alternatively, as the wind stress/wind speed relationship used has the stress proportional to the square of the wind speed if the wind speed is doubled, the time to supply the energy would be 21 days for the eddy surveyed in March 1969. As the residence time of an atmospheric anticyclone in this area is at least a factor of ten less than the time calculated above (the anticyclone takes only six days to pass over New Zealand (Garnier 1958))it appears that the local wind plays only a minor role in supplying energy to this anticyclonic eddy.

There is evidence (Figs 5-7) that smaller anticyclonic eddies containing Subtropical Water are shed offfrom the East Gape Current System and move southwestwards south of the major eddy. The influence that these smaller eddies have on the hydrology of this region will be examined later in this paper. SPATIAL MODIFICATION OF TEMPERATURE AND SALINITY CHARACTERISTICS OF THE EAST CAPE AND SOUTHLAND CURRENTS

In the southern end of the Hikurangi Trench the southwards flowing East Cape Current meets the northwards flowing Southland Current (Fig. 1). Typical T/S curves for the water in both the East Cape Current north of Hawke Bay (Stn D837) and in the Southland Current north of Banks Peninsula (Stn D860) are shown in Fig. 21. The water of the East Cape Current is modified from its original subtropical nature (e.g. at Stn D829, Fig. 21) during its passage down the east coast of the North Island. This modification results mainly from mixing with the water of the Southland Current. This process is illustrated by the sequence of Stns D829, D848 and D840 (Fig. 21). The water flowing north in the eastern branch of the East Cape Current System is of mixed East Cape Current, Southland Current origin (Stn D840, Fig. 21).

in November/December 1968.

Fig. 35. Dynamic height anomaly contours (dyn. cm) at the surface relative to 400 dbars for data collected in November/December 1968. Arrows show flow direction.

The Vertical Structure of the Currents off the East Coast of New Zealand

Off the east coast of New Zealand sub-surface isolines at fixed depths are oriented similarly to the dynamic height anomaly contours (*compare* Figs 5, 8 9; *see also* Sdubbundhit and Gilmour 1964; Garner 1967a; Heath 1968, 1972a). This similarity shows that the currents adjust the mass field such that this circulation can be defined by either the horizontal salinity and temperature distribution or by the depth of the upper mixed layer. Reflection of the circulation in the 200 m temperature distribution and in the depth of the upper mixed layer raises the possibility of tracking the currents in this region by measuring the sub-surface properties at a constant depth in a similar way to that undertaken in the Gulf Stream by Fuglister and Veronis (1965).

The Seasonal Variation : During the winter cruise conducted between 19 September and 11 October 1967 (Heath 1972a) the main vertical velocity gradient of the offshore currents (i.e. East Cape and mixed East Cape - Southland Currents) existed between 200 m and 500 m rather than nearer the surface. However during the 1969 summer cruise the main vertical vélocity gradient of the offshore currents existed in the upper 300 m rather than at deeper depths (*compare* Figs 5, 7, 20). Comparing the dynamic height anomaly plots between various levels in the upper 1500 m for the other hydrological surveys conducted in this region (Sdubbundhit and Gilmour 1964; Garner 1967a; Heath 1968) shows a similar situation; in winter the main vertical gradient of the offshore current occurs in the sub-surface layers (depth greater than 300 m) while in summer the vertical gradient of the current is more uniform with depth, the maximum gradient being in the upper 300 m. This seasonal change in the vertical gradient of the currents can also be seen from the seasonal change in the gradient of the linear correlation equation between the 200 m temperature (T) and the surface dynamic height anomalies DH (DH = mT + C), the change in dynamic height anomaly with the 200 m temperatures (i.e. m) being greater in summer than in winter (Table 3). Most likely the decrease in the gradient of the correlation equation results from meteorological conditions having a larger

Fig. 37. Isotherms (°C) at a depth of 200 m for data collected in November/December 1968.

effect on the near surface temperature distribution in winter than in summer.

The vertical gradient of the geostrophic currents is due solely to variations in the baroclinic currents and therefore the seasonal variation in the current structure must be interpreted in terms of the seasonal changes in the mass field. During the summer surveys a well-developed thermocline was formed but this thermocline was absent in winter. The large vertical variation in the density that exists at the thermocline provides a mechanism for generating strong baroclinic currents with large horizontal pressure gradients resulting where there are large variations in depth of the thermocline. These horizontal pressure gradients produce a vertical current structure in the upper layers which is not present in winter when the thermocline is absent and the surface waters are well mixed.

The largest variation in depth of the thermocline found during the summer survey of 1969 was present where the currents were strongest (*compare* Figs 5-7, 9). A similar comparison of Garner's 1963 results shows the same effect and suggests the development of a summer thermocline may be the mechanism for continuing the vertical gradient of the currents into shallower depths in summer.

Fig. 38. Cross-sectional salinity (‰) plot at latitude 41°30'S for data collected in September/October 1967.

THE VOLUME TRANSPORT AROUND EAST CAPE

It is evident from the geostrophic circulation patterns that the transport towards the south around East Cape is not large enough to solely support the circulation in the Hikurangi Trench. There must therefore be some recirculation in the eddy centred at Stn D847 (Fig. 4). In the cross-sectional sigma-T plot in a line east from East Cape between Stns D822 and D833 (Fig. 4) there is a change in sign of the gradient of the surfaces at Stn D836 (Fig. 22). The gradient is upwards towards the coast west of D836 indicating that the East Cape Current flowed southwards there, but the stations on this line are not deep

Fig. 39. Temperature (°C) / Salinity (‰) curves for Stns D614, D615 (Heath 1968), D680, D679 (Heath 1972a) and D846 (Appendix II).

enough to enable a meaningful volume transport to be computed. The geostrophic streamline (Fig. 5) and 200 m isotherm (Fig. 8) passing closest to Stn D836 also pass closest to Stn D831 and, therefore, assuming that the water passing between Stn D831 and the coast flows into the East Cape Current we can get an estimate of its transport around East Cape.

Because the current structure between Stn pairs D831, D833 and D830, D831 is similar (Figs 23, 24), by taking the volume transport between Stns D830, D831 it is possible to use a deeper reference depth (i.e. 1000 dbars) than between the other station pair to give an estimate of the transport between Stn D831 and the coast. The use of 1000 dbars was determined by the maximum depth of the data but appears to be valid, for 1000 m is approximately the average depth between Stns D831, D833 and also the Ranfurly Bank will limit the flow below that depth (Fig. 15).

The volume transport around East Cape $(V_{\mbox{\sc by}})$ is given by

$$V_{\rm EC} = V_{1000} D830 - D831 \left(\frac{v_1 A_1}{v_2 A_2}\right) (1 + K)$$

 $V_{1\,0\,00\,\,\text{D}\,830\text{-}\,\text{D}\,831}$ is the geostrophic transport where relative to 1000 dbars between Stns D830, D831; V_1, V_2 are the surface geostrophic current speeds relative to 500 dbars (this reference depth was also determined by the data) between Stns D831, D833; D830, D831 respectively, A_1 , A_2 are the distances between the corresponding station pairs; K is the ratio of the area between Stn D833 and the coast and between Stns D831, D833. The surface geostrophic current relative to 500 dbars(v_1) is 13.2 cm s⁻¹ and V_2 is 14.2 cm s⁻¹ with both currents directed towards the southeast. An approximate linear bathymetry between D830 and the coast gives a value of 0.09 for K. The values for A_1 , A_2 are 38×10^3 m and 40.5×10^3 m respectively. V_{1000 D830-D831} is 1.2 Sverdrups $(1 \text{ Sverdrup} = 10^6 \text{ m}^3 \text{ s}^{-1})$ and the approximate volume transport in the East Cape Current around East Cape is 1.16 Sverdrups.

Fig. 41. Monthly average surface temperature recorded from a thermograph on M.V. Hawea offshore from Portland Island, Cape Turnagain, Cape Palliser and Kaikoura in the period November 1967 to October 1968. The numbers give the numbers of readings per month. The approximate track of M.V. Hawea is shown in Fig. 43.

In this estimate the East Cape Current was assumed to pass between Stn D831 and the coast. There is evidence however that at least some of the water passing between Stns D831, D830 may have contributed to the East Cape Current. In Fig. 9 the 55 m isobath passing between Stns D831, D830 passed through Stn D836 [the original assumption of the flow into the East Cape Current being that between Str. D831 and the coast was influenced by the fact that this is a region of upwelling, (see Figs 51, 55) the 200 m isotherm and the isobaths of the mixed layers are deflected further north by sub-surface water being brought closer to the surface and therefore the closest isoline to the coast that passed through D834 was chosen; the transport between Stns D837, D838 just south of East Cape was 4 Sverdrups relative to 800 dbars]. These facts suggest that 1.2 Sverdrups is an underestimate of the flow around East Cape which is most likely between 2 and 4 Sverdrups.

The volume transport and surface speed in that portion of the East Auckland Current deflected northward between Stns D819, D832 were 8 Sverdrups and 23 cm s^{-1} towards the east respectively for a 1000 dbar reference surface.

THE VOLUME TRANSPORT IN THE CURRENTS OFF THE EAST COAST OF NEW ZEALAND BETWEEN EAST CAPE AND BANKS PENINSULA

The volume transports relative to various reference depths between station pairs off the east coast of New Zealand have been calculated from data collected in February/March 1969 (Appendix II, Fig. 25) and in September/October 1967 (Heath 1972a, Fig. 26). In this region the currents flow in approximately the same direction down to at least 1500 m (Heath 1972c) and thus a deep reference surface of at least this depth should be used. This is not always possible as the choice of reference surface is determined by the maximum depth of the observations. Also the horizontal spacing of the stations limits the scale of the motions that can be examined and the lateral extent of the different currents cannot be determined exactly. However, within these limitations a general summary of the volume transport of the circulation off the east coast of New Zealand can be given. The values are those from the February/March 1969 data (Fig. 25).

The East Cape Current was fed by a clockwise flow of 2-4 Sverdrups around East Cape. This water flowed southwards down the western side of the Hikurangi Trench and was joined from the west, south of latitude 42°S, by a flow of water from the Southland Current. The water of this combined current entered an anticyclonic eddy in which the volume transport was from 10-20 Sverdrups. Some of the water in this eddy recirculated while the rest flowed northwards along the eastern side of the Kermadec Trench forming the eastern side of the tongue of the East Cape Current System. A smaller anticyclonic eddy shed off from the main anticyclonic eddy had a volume transport of 2 Sverdrups (i.e. between Stns D856 and D855). The volume transport of the Southland Current in this region was approximately 6 Sverdrups (i.e. volume transport for a zero level at 1500 m between Stns D859 and D855 plus that for a zero level at 600 m between Stns D859 and D860) and by neglecting any volume transport through Cook Strait an estimate of approximately 7-10 Sverdrups is obtained for the water leaving the Hikurangi Trench in the eastern arm of the East Cape Current System.

SUBTROPICAL CONVERGENCE

East of Banks Peninsula, Subantarctic Water meets the Subtropical Water of the East Cape Current in the Subtropical Convergence (Fig. 1). Deacon (1937, 1945) and Garner (1953, 1959) both defined the position of this feature from surface distributions of temperature and salinity and showed the Subtropical Convergence extending along the Chatham Rise and northwards along the east coast of New Zealand, meeting the coast near Castlepoint (*see* Garner 1959, fig. 1).

SUBTROPICAL CONVERGENCE NEAR THE CHATHAM RISE

All the hydrological studies made east of New Zealand across the Chatham Rise have located the

Subtropical Convergence near the Rise at a mean position of 43°S (approx.) (Garner 1967a; Heath 1968, 1972a) whereas on the west coast of New Zealand the Convergence is usually found further south at about 46°S (approx.) (Garner 1967b, 1959). This difference in the latitudinal position of the Convergence can be explained by the effect of the Chatham Rise on the circulation east of New Zealand. In the Hikurangi Trench, no reference surface exists at any depth less than the maximum depth of the Chatham Rise (see Heath 1972c). The Chatham Rise is therefore a southern barrier to the southwards water movement at greater depths than the Rise. This water is frictionally coupled to the water above which is therefore also limited in its southward movement by both this coupling and by the Subantarctic Water south of the

TABLE 5. Source of data, period of collection, surface temperature and salinity, and temperature at a depth of 200 m at the bottom of the tongue on the East Cape Current System.

Source of Data	Garner 1967b	Heath 1968	Heath 1972a	See Appendix II
Period of Observation	18 February to 3 March 1963	10 to 18 April 1967	19 September to 11 October 1967	1 to 14 March 1969
Surface temperature at bottom of tongue of East Cape Current System	20°C	18°C	13°C	18.5°C
Surface salinity at bottom of tongue	35.4‰	35.1%。	35.0%	35.3%
Temperature at 200 m at the bottom of tongue	13°C	13°C	12°C	13°C

Fig. 42. Highest surface temperature (°C) recorded from T.E.V. Maori and M.V. Hawea near Kaikoura and approximately 18 miles south from where the above temperature was recorded in each case for the period August 1967 to April 1969. The approximate track of M.V. Hawea is shown in Fig. 43.

Rise which must also be guided by the Rise. Thus the Chatham Rise limits the southward flow of the Subtropical Water and effectively determines the position of the Subtropical Convergence in this region.

STRUCTURE OF THE SUBTROPICAL CONVERGENCE ACROSS THE CHATHAM RISE

To date there have been seven sets of hydrological data collected by the N.Z. Oceanographic Institute which can be used to define, in some detail, the vertical structure of the Subtropical Convergence east of New Zealand [Garner 1967a; Heath 1968 (2 sets), 1972a (2 sets); Ridgway (in press) (2 sets)]. The periods during which the observations were made, the longitude of the sections, the surface temperatures and salinity ranges across the highest surface gradient in the region of the Convergence for these sections are listed in Table 4.

The structure of the Subtropical Convergence can conveniently be illustrated by considering the typical meridional salinity profile across the Convergence shown in Fig. 27. A salinity, rather than temperature, profile was chosen because the change in the vertical gradient of salinity across the Convergence is greater than the change in temperature gradient.

At the Convergence the cool, less saline Subantarctic Water meets the warmer, more saline Subtropical Water and the isohalines and isotherms generally

Fig. 43. Approximate tracks of M.V. Hawea and T.E.V. Maori. (Fig. 14 of Heath 1971).

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

slope downwards towards the north (Fig. 27 and figs 12-13 in Garner 1967a). In several sections across the Convergence there is evidence of a tongue of higher salinity sub-surface water extending southwards into the lower salinity Subantarctic Water. This higher salinity tongue was found between 80 m and 200 m by Deacon (1937) and between 100 m and 300 mby Garner (1967a) and Heath (1968). Deacon (1937, p.50) explained the presence of a southwards movement of water in this tongue as follows ... 'whilst the wind drives the surface [Subantarctic] water towards the north, another factor - the difference of climate between the southern and northern parts of the Subantarctic] zone, sets up a density gradient which tends to cause a current in the opposite direction'. Deacon found that the high salinity sub-surface tongue extended nearly as far south as the Antarctic Convergence, but his measurements were made away from any bottom topographic feature such as the Chatham Rise which could influence the flow. At the longitudes of the Chatham Rise the higher salinity sub-surface tongue does not extend as far south as in the open ocean; the furthest south it has been found in this region is 45°S (Fig. 27) for even though it is found above the depth of the Chatham Rise, the Rise still hinders its southwards movement. The largest horizontal gradients of the three parameters, salinity, temperature and density, across the Subtropical Convergence over the Chatham Rise occur in the upper 600 m (Fig. 27).

SEASONAL VARIATION IN THE POSITION OF THE SUBTROPICAL CONVERGENCE OVER THE CHATHAM RISE

In the open ocean the latitudinal position of the Subtropical Convergence is determined by the relative strengths of the southwards flowing Subtropical Water and the north-easterly flowing Subantarctic Water. This is in contrast to the case of the Antarctic Convergence where the latitudinal position is determined by the position where the Deep Water is forced upwards over the more dense Bottom Water (Deacon 1937, p.21). In most parts of the ocean the Subtropical Convergence is subject to much greater variation than the Antarctic Convergence (it advances towards the south in summer, recedes to the north in winter, and, in the central part of the Atlantic Ocean, it has other irregular movements with a range of as much as 6° of latitude (Deacon 1937)) but a zonal morphological barrier, such as the Chatham Rise, limits its latitudinal variation.

Comparing two salinity cross-sections from data collected across the Chatham Rise along longitude $177^{\circ}E$ (Fig. 27, from data collected April 1967 [Heath 1968]; Fig. 28, from data collected September 1967 [Heath 1972a]) it can be seen that the Subtropical Water extended further south in the winter than in the summer in that year. This can also be seen by com-

paring the surface salinity distributions for these cruises (i.e. compare Fig. 27 with Heath 1972a, fig. 12). All the data collected across the Chatham Rise, except that for September/October 1967, have been collected in summer and in no case was Subtropical Water found as far south as in September/October 1967. Comparison of the surface and 200 m temperature distributions for the two 1967 cruises shows that the tongue of the East Cape Current System is best developed in summer, as would be expected (see section on Seasonal Changes), but finding the Subtropical Water further south in winter appears contrary to the general seasonal movement of the Subtropical Convergence. One possible explanation for this can be offered in terms of the seasonal variation of the vertical structure of the currents in this region. It has been shown that here during the summer the vertical shear of the currents is nearly uniform to a depth of at least 1000 m, whereas in winter the vertical shear is larger in the sub-surface layers (depth greater than 300m, see p. 41). The difference in the dynamic height anomalies between station pairs (these curves represent the vertical structure of the current) occupied during different periods are shown in Fig. 29 (Stns C874, C873, September 1962, Sdubbundhit and Gilmour 1964; Stns B758, B767, February 1963, Garner 1967; Stns D612, D613, April 1967, Heath 1968; Stns D676, D675, October 1967, Heath 1972a). In those curves for the summer data (B758-B767, D612-D613) there are sharp changes in the gradients in the upper 300 m. These changes are due to the horizontal density gradient. Plots of sigma-T (σ t) with depth for stations occupied during different seasons in this area are shown in Fig. 30: In summer there was a large change in the density across the thermocline (found in the upper 100 m at Stns B758, D613). Below the thermocline the gradient of σt decreased until it reached a nearly constant value below a depth of approximately 500 m. Therefore, in the upper 500 m, the vertical changes in the density can act as a mechanism for producing large vertical gradients in the currents by creating horizontal density gradients. During winter, however, no strong thermocline is formed off the east coast of New Zealand (Stns C873, D675, Fig. 30), the water in the upper 300 m has a nearly constant density, and therefore the density field does not provide a mechanism for creating a large change in the vertical gradient of the currents (i.e. the turbulent momentum exchange will be small). An explanation of the southward extension of Subtropical Water in the winter can now be offered by considering the gradient of the vertical stress component

(a 32 v

assuming that the eddy viscosity coefficient is constant). During summer, when sharp changes occur in the vertical gradient of the currents, the vertical stress term will be large, the water above the depth of the Chatham Rise will be strongly coupled to that below and will be partially restrained in its southward

Fig. 44. Sea surface temperature (°C) distribution measured with an infrared radiation thermometer on 2 April 1969. The dashed line shows the flight path.

movement. In winter, no sharp changes generally occur in the vertical gradient of the currents and the coupling between the water in the mixed layer and the water below will not be as strong as in summer. This decrease in the coupling may be sufficient to allow the Subtropical Water to push further south in winter; however this seasonal change is probably also linked to some seasonal wind variability.

THE SUBTROPICAL CONVERGENCE EAST OF THE CHATHAM ISLANDS

Further evidence of the influence that the Chatham Rise has on the structure and position of the Subtropical Convergence is given by a meridional salinity

plot constructed from data collected in January 1969 to the east of the Chatham Islands along longitude 174°00'W (Fig. 31) by Ridgway (in press). A subsurface tongue of high salinity water was developed to a depth of 400 m south of the latitude of the Chatham Rise (Fig. 31). A similar, but not so well developed salinity tongue was also present in the upper 400 m over the Chatham Rise in February 1969 (Fig. 32). The detached high salinity patch, centred at a depth of approximately 125 m in the tip of both of these tongues, suggests that the southwards movement of this Subtropical Water occurs as a series of pulses rather than a constant southwards drift. In the upper 600 m the Subtropical Water extended further south to the east of the Chatham Islands (longitude 174°W, Fig. 31) than to the west (longitude 179°, Fig. 32). This agrees with the Chatham Rise

Fig. 45. Sea surface temperature ($^{\circ}$ C) distribution measured with an infrared radiation thermometer on 17/18 November 1969. The dashed line shows the flight path.

limiting the southwards flow of Subtropical Water as discussed above.

The influence that the extension of the Chatham Rise, to the east of the Chatham Islands, has on the movement of Deep Water is also illustrated in Fig. 31. The Deep Water was forced upwards on its passage northwards and at Stn F954 (Fig. 31) it is in direct contact with the Subtropical Water above, cutting off the direct supply of Antarctic Intermediate Water from the south. This is illustrated by the 34.5% isohaline which rises from a depth of $1630 \text{ m at } 50^{\circ}\text{S}$ (Stn F957) to a depth of $1250 \text{ m at the latitude of the Chatham Rise (Stn F952, latitude <math>43^{\circ}30'\text{S}$) (Fig. 31).

THE SUBTROPICAL CONVERGENCE NORTH OF BANKS PENINSULA

West of longitude $175^{\circ}E$ on the eastern side of the Mernoo Gap, the Subtropical Convergence extends northward as the boundary between the cool, low salinity water of the Southland Current flowing northward (Heath 1972a) and the warmer, more saline water of the East Cape Current flowing southwards. Garner (1959) found the Convergence followed approximately the surface isotherm of $15^{\circ}C$ in February and $10^{\circ}C$ in August and the surface isohalines of 34.7% to 34.8%with little seasonal change. In the period 26 November to 4 December 1968 a hydrological cruise was conducted off the east coast of the South Island north of Banks Peninsula and in Cook Strait. Station circumstances for this cruise, other than those stations reported elsewhere by Heath (1971, 1972b), are given in Appendix I, and the station data are given in Appendix II. The temperatures and salinities that

Fig. 46. Surface temperature records off the east coast of New Zealand from thermographs installed on M.V. Hawea and T.E.V. Maori. The approximate tracks of M.V. Hawea and T.E.V. Maori are shown in Fig. 43.

TABLE 6. Linear regression analysis (S = mT + c) of the sea surface salinity (S) on the sea surface temperature (T) for the different sets of data collected off the east coast of New Zealand. N gives the number of sets of observations used, r the regression coefficient and σ the standard deviation.

Period of Observation	Source of Data	m ‰C	C ‰	σt	σs	r	N
18 February to 3 March 1963	Garner 1967	0.19	31.57	1.48	0.29	0.962	26
24 February to 13 March 1965	Ridgway 1970	0.10	33.43	0.69	0.11	0.646	32
	Combined Garner (1967) and Ridgway (1970a)	0.19	31.71	1.25	0.25	0.922	58
25 September to 11 October 1967	Heath 1972a	0.11	33.59	1.05	0.15	0.790	60
1 to 14 March 1969	Appendix II	0.21	31.37	1.63	0.38	0.928	56
26 November to 4 December 1968	Appendix II	0.16	32.61	0.88	0.17	0.864	47

approximately parallel the Convergence for the September/October 1967 and November/December

Fig. 47. Seasonal variation of surface salinity (‰) and temperature (°C) abeam of Kaikoura and at latitude 43°20'S, longitude 173°05'E in Pegasus Bay, from observations made on board T.E.V. *Maori* between October 1968 and October 1969. The approximate track of T.E.V. *Maori* is shown in Fig. 43. 1968 cruises are shown below.

Cruise	Temperature Surface Tem at 200 n	at S.T.C. perature	Salinity Surface in upper	at S.T.C. Maximum 200 m
Sept. / Oct. 1967	11°C	9°C	34.8%	34.8%0
Nov./ Dec.1968	11.5°C	9°C	34.6‰	34.8%0

The surface temperature defining the Convergence for both cruises and the salinities in September/ October 1967 agree with the characteristic values given by Garner (1959). The decrease in the seasonal range of the 200 m temperatures compared to the surface values is expected, for the largest seasonal changes occur near the surface.

The surface salinities were lower in November/ December 1968 than in September/October 1967. At most of the stations in November/December 1968 the salinities initially increased with depth (compare Figs 33, 34) but in September/October 1967 the maximum salinity generally occurred at the surface. The maximum near surface isohaline defining the position of the Convergence in November/December 1968 also agrees with Garner's surface value. The surface geostrophic currents relative to 400 dbars in November/December 1968 (Fig. 35) show that the surface water of the Southland Current extended over the relatively more saline water of the East Cape Current during this period, and this would create the inversions in the salinity/depth plots. The occurrence of low surface salinities in November/December 1968 emphasises the need for caution in using only surface hydrological data in coastal areas since the surface data can have large non-seasonal variations.

Fig. 48. Five bathythermograph records collected over a 24-hour period at Stn G142 (latitude $42^{\circ}25$ 'S, longitude $173^{\circ}57$ 'E) and the resultant plot of temperature with depth over the period.

THE NORTHERN LIMIT OF THE SUBTROPICAL CON-VERGENCE EAST OF NEW ZEALAND

The northwards extension of the Subtropical Convergence forms the outer arm of the cool, low salinity tongue of the Southland Current; the inner arm of this tongue is the Southland Front (Heath 1972a). Both the Subtropical Convergence and the Southland Front are developed to a depth of at least 900 m (where depth permits) north of Banks Peninsula (Fig. 36). During September/October 1967 both the Subtropical Convergence and the Southland Front were present as far north as Kaikoura (Fig. 36) but in November/December 1968 they could also be traced north of Kaikoura (Fig. 37). The development of the northward extension of the Subtropical Convergence is closely connected with the anticyclonic, subtropical eddies that are sometimes shed off from the main flow of the East Cape Current System; the periodicity of these eddies will be discussed later in this paper. These eddies extend to a depth of at least 900 m (Figs 17, 38) and will therefore be guided southwestwards by the bottom

topography (Fig. 3). When one of these eddies is present near Kaikoura the northern passage of the Southland Current is hindered; the pressure force developed between the Subtropical Water in the anticyclonic eddy and the cooler, less saline water of the Southland Current creates a component of the Southland Current directed offshore. During September/ October 1967 a well developed anticyclonic eddy was present near Kaikoura and a strong component of the Southland Current was directed offshore near Kaikoura (see Figs 25-27, Heath 1972a). In November/December 1968 a relatively weak anticyclonic eddy was present offshore south of Kaikoura centred at Stn D767 (Figs 3, 35) and the main flow of the Southland Current extended further north past Kaikoura. The water of the main northwards flow of the Southland Current which did not enter southern Cook Strait (see Heath 1971) was limited in its northern passage by an anticyclonic eddy situated just south of Cape Palliser, centred at Stn D783 (Figs 3, 37).

When only a small anticyclonic eddy is present near Kaikoura, the Subtropical Convergence may be

Fig. 49. Salinity (%) / Depth (m) curve of Stn G142.

defined as a continuous feature as far north as the east coast of the North Island (as in November/Dec-

ember 1968). However, when a large anticyclonic eddy is present near Kaikoura, the Subtropical Convergence may be defined as a continuous feature only as far north as Kaikoura; the Convergence may still be formed north of Kaikoura, between the component of the Southland Current which flows north and the main flow of the East Cape Current (Fig. 38), but will be cut off from the main Convergence south of Kaikoura by the component of the Southland Current that turns east near Kaikoura (as in September/October 1967) (see Heath 1972a). Should a strong anticyclonic eddy exist just north of the Mernoo Gap, the Southland Current could be diverted towards the east along the Chatham Rise. Then the northwards extension of the Subtropical Convergence would not be formed and the Convergence would only be defined along the Chatham Rise.

TEMPERATURE AND SALINITY VARIATIONS

From the available data it is possible to give only a very general account of the seasonal and non-seasonal changes of salinity and temperature off the east coast of New Zealand.

SEASONAL CHANGES

Fig. 39 shows T/S diagrams for stations occupied in different periods at approximately the same positions relative to the circulation, (Stns D614, D615, April 1967, Heath 1968; Stns D579, D680, September 1967 Fig. 2, Heath 1972a; Stn D846, March 1969, Fig. 4). Temperature/depth diagrams for these stations are shown in Fig. 40. Temperature and salinities in the

Fig. 51. Three surface temperature records collected near East Cape from a thermograph installed on M.V. Hawea, the track of which is shown in Fig. 43.

in the tongue of the East Cape Current System were more strongly developed in summer than winter (*compare* Figs 10, 11 with Figs 11, 12, Heath 1972a).

Monthly average temperatures for four locations along the east coast of New Zealand (Portland Island, Cape Turnagain, Cape Palliser, Kaikoura) taken from thermograms collected from M.V. Hawea and covering the period November 1967 / October 1968 have been plotted in Fig. 41. Surface temperatures at positions abeam from Kaikoura in the period October 1968 /April 1969 recorded on thermographs installed in both M.V. Hawea and T.E.V. Maori are shown in Fig. 42. The normal tracks of both vessels are shown in Fig. 43. The seasonal temperature range at Kaikoura and Cape Palliser was approximately 7°C, while at Portland Island and Cape Turnagain it was approximately 6°C. The temperatures were highest during the period January/February and lowest in the period July/August.

SPATIAL VARIATIONS OF SURFACE TEMPERATURE AND SALINITY

Coefficients of linear regression equations between the surface temperature and surface salinity for the data collected off the east coast of New Zealand are given in Table 6. There is little correlation between the surface temperature and salinity and only small changes of salinity with a change in temperature (i.e. small m) for data collected in the vicinity of an individual water mass (e.g. Ridgway 1970a, in the Subtropical Water), but the correlation is much higher for data collected near the boundary of two water masses (e.g. Garner 1967a, near the boundary between the Subtropical Water of the East Cape Current and the cooler, less saline water of the Southland Current - this cruise was conducted in the same months but two years earlier than that by Ridgway 1970a). The decrease in the value of the correlation coefficient can be explained by the small variation of the surface temperature or salinity in these individual water masses; compare the standard deviations of the surface temperature and salinities for the two cruises - Garner 1967a, Ridgway 1970a in Table 6 - the fact that the standard deviation is smaller for the combined set of surface data for these two cruises than for the Garner (1967a) cruise alone shows that the size of the standard deviation is evidently not a function of the number of sets of data.

The ratios of the horizontal surface salinity gradient in winter to that found in summer near the boundary between the Southland and East Cape Currents was smaller than the corresponding ratio of the horizontal surface temperature gradients [compare the gradients (m) for the data collected by Garner (1967a) and that collected during September/October 1967 by Heath (1972a) and November/December 1968 (Appendix II).

Fig. 52. Seasonal surface temperature (°C) variations of cool water near East Cape (lower curve) and the warmer water found adjacent to the cool water over the period November 1967 to October 1968. The surface temperatures were recorded on a thermograph installed on M.V. Hawea. The approximate track of M.V. Hawea is shown in Fig. 43.

HYDROLOGY OF THE WATER BETWEEN BANKS PENINSULA AND CAPE PALLISER

Garner (1953) found tongues of Subtropical Water in both southern Cook Strait and close inshore near Kaikoura, and explained their presence by the guiding effect of the bottom topography. The complicated dayto-day variations in the surface temperatures and salinities along this entire coast were attributed by Garner (1953) to the effect of both wind-derived upwelling and upwelling caused by water impinging on to the continental shelf. A reported occurrence of wind-derived coastal upwelling along this coast has been made by Heath (1972b). A more detailed analysis of the hydrology on this coast using the circulation as discussed above and by Heath (1972a) can now be given.

Observations: To supplement the data from hydrological cruises the following hydrological data have also been collected.

1. Thermograph records taken from a thermograph installed in the engine room of the T.E.V. *Maori* over the period from August 1967 to April 1969. The sensing element of this instrument was located in a seawater intake supplying cooling water to the engines. Sea surface salinity data measured from hourly water samples collected from the T.E.V. *Maori* during seven trips between October 1968 and October 1969. The salinities were measured onshore with an inductive salinometer (Brown and Hamon 1961).

2. Sea surface temperatures taken from a thermograph installed in the engine room of the M.V. *Hawea* over the period August 1967 to April 1969.

3. Two near-synoptic, sea surface temperature distributions measured with an airborne infrared radiation thermometer on 2 April and 17/18 November 1969.

WATER TYPES ON THE NORTH CANTERBURY COAST

The North Canterbury Coast is bathed by the cool, low salinity water of the Southland Current (Heath 1972a) with regular intrusions of Subtropical Water derived from the East Cape Current. The presence of the Southland Current on this coast was marked by the 15.5°C and 16°C isotherms in the surface temperature distribution measured with the infrared radiation thermometer (I.R.T.) on 2 April 1969 (Fig. 44), and by the 13.5°C and 14°C isotherms for an I.R.T. survey made on 17/18 November 1969 (Fig. 45). The patch of water represented by the 16.5°C and 17°C isotherms in Fig. 44 and by the 16°C isotherm in Fig. 45 most likely represents the intrusion of water derived from the East Cape Current. An intrusion of water with a temperature of 16°C near Kaikoura in April appears to have limited the supply of water of the Southland Current north of Kaikoura during the period, whilst in November the low temperature water of the Southland Current extended eastwards from Cape Palliser cutting off the supply of Subtropical Water from the north. The cold tongue of the Southland Current is also evident in the thermograph records collected from both T.E.V. *Maori* and M.V. *Hawea*. One thermogram from each ship collected in December 1967 and May 1968 is shown in Fig. 46.

HYDROLOGY OF PEGASUS BAY

The seasonal temperature range in Pegasus Bay (i.e. 8.5°C approx.) is, as expected, greater than at Kaikoura (i.e. 7°C approx.) (Fig. 47). Solar heating effects are greater in the relatively sheltered, shallow water of Pegasus Bay than in the open ocean. Coastal run-off also has a marked effect on the waters of Pegasus Bay and accounts for the very low salinities (34.0‰) measured by T.E.V. *Maori* during November 1968 and July/August 1969 (Fig. 47).

HYDROLOGY OFF KAIKOURA

The Southland Current flows northwards along the North Canterbury coast with a component being deflected offshore near Kaikoura (Heath 1972a), the strength of this latter component being greatest when an anticyclonic eddy of Subtropical Water derived from the East Cape Current System is present near Kaikoura (p. 53). The non-seasonal and spatial variations of temperature and salinity are quite large near Kaikoura with day-to-day changes of surface temperature of 2° C and spatial changes of 1.5° C over the 18 miles (33 km) not being uncommon (Fig. 42). Comparison of the thermograph records shown in Fig. 46 shows that the warm water often found near Kaikoura is also present offshore (*see* the approximate track of the two ships shown in Fig. 43).

Fig. 53. Bathythermograms collected near East Cape at Stns D834, D835. Station positions are shown in Fig. 4.

The variability with time of the sub-surface temperatures near Kaikoura is illustrated by the five bathythermograph traces shown in Fig. 48. These records were obtained at Stn G142 ($42^{\circ}25$ 'S, $173^{\circ}57$ 'E) at equally spaced time intervals over a 24-hour period, on 20/21 September 1967. The water temperatures were highly variable above a depth of 140 m with a welldefined inversion centred at a depth of approximately 70 m caused by cool coastal water overlying the water of the Southland Current (Fig. 49). The advective transport of the Southland Current was most likely large enough to limit the effects of the river outflow to the upper 200 m (Fig. 49).

MECHANISMS GENERATING THE NON-SEASONAL EFFECTS ON THE NORTH CANTERBURY COAST

There are three mechanisms that would account for the warm water patches found near Kaikoura. The present study supports the opinion of Garner (1953) that warm water is guided towards Kaikoura by the bottom topography but the roles, if any, that the two other mechanisms play still need investigating. These are the result of Subtropical Water upwelling as proposed by Houtman (1965) or the result of the warm water of the East Cape Current being driven further south by local winds.

Houtman's postulate is based on warm Subtropical Water at a depth of 200 m upwelling through the cool water produced by the river run-off at Kaikoura. The tongue which defines the Southland Current in this region is still present at 200 m (Fig. 37) (see also Fig. 13, Heath 1972a) and thus the water will be colder at 200 m than at the surface unless there are large temperature inversions above 200 m. No temperature inversions of this depth were observed in the data collected for the present study (Appendix II). In Houtman's observations a thermocline was present at a depth of 70 m seawards of the Conway Ridge (this ridge lies approximately 8 miles (15 km) offshore south of Kaikoura and runs parallel to the coast), and any water that rose from below the thermocline would not be warmer than the surface water further to the north or south. It has been found that the occurrence of Subtropical Water near Kaikoura has a period of about 55 days (Refer to "Periodicity of the influx of warm water towards Kaikoura") and it therefore appears that the role that the amount of coastal run-off plays in determining the presence of Subtropical Water near Kaikoura is only minor for it is unlikely that this run-off also has a 55-day period.

The second possibility, warm water being driven south by local winds, has been examined by Heath (1972d) who found that the southwesterly wind-derived water movement, required to transport the warm water, occurred very seldom in the period September 1967/ July 1968 although warm patches were present at Kaikoura in this period.

It appears that the main process is the guiding of this warm water towards Kaikoura by the bottom topography. Evidence for this warm water being transported in the form of small anticyclonic eddies is given by the presence of this type of eddy near Kaikoura in several of the distributions of the relative geopotential anomaly topography of the sea surface near Kaikoura (Figs 7, 8, 35; *see also* Heath 1972a). These eddies are probably derived from the larger anticyclonic eddy in the East Cape Current System.

Periodicity of the Influx of Warm Water Towards Kaikoura

Garner (1961, p.51) states that "subtropical water appeared off the Kaikoura coast in a series of incursions at intervals of approximately two months". This statement was based on thermograph records taken from the inter-island ferry T.E.V. Hinemoa. At 2weekly intervals in the 15-month period from April 1964/June 1965, Bradford (1972) collected surface and sub-surface temperature and salinity data at a 'permanent station' located five miles east of Kaikoura Peninsula in 200 m (approx.) of water. Salinities were measured by the Knudsen Method (Oxner 1920) and the temperatures were digitised from bathythermograph records. From the surface temperatures and salinities alone, Bradford (1972) found that the intervals between the incursions of Subtropical Water near the Kaikoura coast were not as regularly spaced as those recorded by Garner (1961). Plots of the variations with time of the temperatures and salinities at the surface and 100 m, and also the salinity at a depth of 200 m, from Bradford's observations, are shown in Fig. 50. There is a noticeable non-seasonal fluctuation with a period of approximately 50-55 days superimposed on the seasonal fluctuation; this non-seasonal fluctuation is best defined from the sub-surface measurements where the influence of coastal run-off is less marked (see p. 56). The amplitude of the fluctuation of the sub-surface salinity is greatest in winter (May/October) and correlation between the salinity and temperature fluctuations is closest at this time (Fig. 50). In summer the sub-surface water found at this 'permanent station' was mainly of subantarctic origin derived from the Southland Current (in February at 100 m the temperature was 11°C and the salinity 34.7%, while the respective typical values in Subtropical Water [e.g. Stn D849, Appendix II] are 15.5 C and 35.4% and in the Southland Current [e.g. Stn D860, Appendix II] the values are 12.5° C and 34.6° . An explanation for this stronger fluctuation in winter than summer and the presence of water of mainly subantarctic origin in summer cannot be given in terms of the seasonal variation of the winds on the North Canterbury coast; the wind-derived transport of the Southland Current, being greater in winter (Heath 1972d), increases the amount of low salinity, low temperature water found near Kaikoura as well as hindering the passage of an anticyclonic eddy of Subtropical Water moving towards Kaikoura.

Fig. 54. Cross-sectional salinity (%) profile across the Ranfurly Bank near East Cape. Station positions are shown in Fig. 4.

A tentative explanation for this phenomenon can be given in terms of the flow in the East Cape Current System. During February/March 1969 the tongue of the East Cape Current System was found further to the east (Fig. 6) than in September/October 1967 (Fig. 16, Heath 1972a). Assuming that this is the usual situation, with the tongue being further to the east in summer than in winter (the positions of the anticyclonic eddy in the East Cape Current [Table 2] supports this), we see that a small anticyclonic eddy shed off from this tongue will be more likely to be guided towards Kaikoura in winter than in summer. In summer the small eddy is likely to be guided further south. The data collected off this coast supports this, for in November/December 1968 an anticyclonic eddy was found just north of the Mernoo Gap and the deflection of the Southland Current near Kaikoura was very weak (Fig. 35); in February/March 1969 the deflection of

the Southland Current near Kaikoura was also very weak (Figs 5, 8); in September/October 1967 an anticyclonic eddy was present near Kaikoura and there was a strong deflection of the Southland Current towards the east (Heath 1972a). Thus we see that in summer the tongue of the East Cape Current System is found further to the east, no anticyclonic eddies move towards Kaikoura and the main flow of the Southland Current is northwards past Kaikoura. This flow turns east near Cook Strait and moves along the east coast of the North Island and, in doing so, pushes the East Cape Current further offshore. In winter the tongue of the East Cape Current is found closer to the coast and the anticyclonic eddies shed off from this tongue move towards Kaikoura where they tend to deflect the Southland Current towards the east. The northwards flow of the Southland Current past Kaikoura is therefore reduced and the East Cape Current comes closer

to the coast. These circumstances explain why patches of Subtropical Water are found near Kaikoura mainly in winter and why water of subantarctic origin is found near Kaikoura in summer, the type of water found depending on the position of the tongue of the East Cape Current System.

THE MECHANISM GENERATING THE EDDIES WHICH TRAVEL TOWARDS KAIKOURA

It has been found that the warm water near Kaikoura is transported there in the form of anticyclonic eddies. which have probably broken off from the East Cape Current System (see p. 57). For these small eddies to develop, some mechanism must act to disturb the flow in the East Cape Current. The first disturbing mechanism that suggests itself is the influence of the passage of the atmospheric anticyclones over New Zealand. The direct effect that the winds associated with those atmospheric anticyclones have in generating these eddies can be examined by calculating the energy in an eddy, and relating this to the time needed for the winds to provide this energy. The variations of the geostrophic current with depth between a pair of stations (D658, D659) occupied in an eddy located near Kaikoura in October 1967 are shown in Fig. 20. A reference surface of 1500 dbars has been assumed between these stations but, as the current was most likely not zero at this depth, the calculated energies will be under-estimates. The current profile has been approximated (see p. 35) by the linear equation -

$C = -2 \times 10^{-4} \Xi + 0.30$

where C is the current speed $(m s^{-1})$ and Z is the depth (m) (Fig. 20). Little is known about the spatial variability in the eddy and therefore because of lack of knowledge to the contrary the speed has been assumed at a fixed depth. If, say, the horizontal variation were taken to be a linear function of the distance from the centre, both the kinetic and potential energies would be halved but the decrease would not affect the later argument based on the length of time to transfer the energy from the wind. The kinetic energy per unit area of a column of water from the surface to a depth of $1500\,\text{m}$ in the eddy is $1.58\,\times\,10^5$ joules and the potential energy relative to a homogeneous ocean of the same column relative to 1500 m is 4.6 x 10⁵ joules. For the wind to add a total energy per unit area to the column of 6.2×10^5 joules, taking the average current speed during the transfer as half the final surface speed (i.e. 0.15 m s^{-1}), the wind would have to blow parallel to the current at a speed of 15m s⁻¹ for 79 days or, alternatively at a speed of 30 m s^{-1} for a period of 20 days (see p. 36). As the typical period of the passage of atmospheric anticyclones over New Zealand is six days (approx.) (Garnier 1958), it is unlikely that the passage of a single anticyclone is the generating mechanism behind the formation of these small eddies for -

- 1. the period is less than the periodicity of the influx of the eddies at Kaikoura;
- 2. the wind speed/time factor in the atmospheric anticyclones is considerably less than that required to provide the energy in the eddies.

Assuming that the disturbance in the flow of the East Cape Current would have the same period as that found for the occurrence of warm water near Kaikoura, we can look for a disturbance of this period in the source of the East Cape Current. The East Cape Current has its source initially in the East Australian Current, the water having moved westwards across the Tasman Sea to pass around North Cape and along the northeastern coast of New Zealand as the East Auckland Current (Garner 1969). Hamon (1968) analysed the spectrum of the sea level at Lord Howe Island in relation to the circulation of the East Australian Current and found that there are periods in the spectrum between two months and a year which are due to the movement of the circulation pattern relative to the island. Also, Hamon and Kerr (1968) examined the time and space scales of variations in the East Australian Current by correlating different surface current velocities estimated by merchant ships operating along the east coast of Australia. They concluded that the East Australian Current System has a period of the order of 70 days (i.e. approximately two months). This period is reasonably close to that of the influx at Kaikoura and it therefore seems likely that a periodic increase in the amount of water entering the East Cape Current System around East Cape, linked to the periodic nature of the East Australian Current System, increases the flow of the East Cape Current such that a small anticyclonic eddy is formed. This eddy is then guided by the bottom topography towards Kaikoura, where the temperature and salinity contrast between this warm, saline water and the cool, low salinity water of the Southland Current is observed. One possible method for the formation of these eddies would be for the increased flow of water around East Cape to generate meanders in the East Cape Current which might, on meeting the sloping bottom at the southern end of the Hikurangi Trench, become unstable and grow to form eddies. A tentative theory of such a mechanism is given in Appendix III.

INFLUENCE OF LOCAL WINDS ON THE HYDROLOGY OF THE WATER ALONG THE NORTH CANTERBURY COAST

Alongshore winds from both directions influence the temperature and salinity distribution on the North Canterbury coast. Southerly winds decrease the temperature and salinity by the increased advection of this water in the Southland Current, a reported instance being given by Heath (1970) when the surface temperature at Kaikoura decreased 5° C in 24 hours. Northerly winds also produce a decrease in the nearsurface temperature and salinity through the effects of coastal upwelling (Heath 1972b). Thus on the coast because nearly all winds will have an alongshore component, local winds will play a large role in determining the changes in the day-to-day temperature and salinity distributions.

HYDROLOGY OF THE WATER ALONG THE EAST COAST OF THE NORTH ISLAND

The east coast of the North Island is bathed in the south by the relatively cool, low salinity water of the northward flowing Southland Current and in the north by the warm, saline Subtropical Water of the southward flowing East Cape Current. The type of water found at any particular time or place on this coast depends essentially on the position of the northern boundary between the Southland and East Cape Currents. Heath (1972a) has discussed the fluctuations in the temperature and salinity distributions that occur on this coast and he showed that though most of the water in the Southland Current turns east near Cape Turnagain, the near-surface water may travel further north than the deeper water, such that cool, low salinity water may be found on this coast north of Hawke Bay. The surface temperature boundary between the Southland and East Cape Currents has also been examined with an Infra-red Radiation Thermometer by Ridgway (1970b), who also found the boundary present near Cape Turnagain.

At East Cape the surface temperature and salinities are markedly influenced by upwelling of cool, low salinity water which adds to the complexity of the hydrology of this region.

OCCURRENCE OF LOW TEMPERATURE WATER NEAR EAST CAPE

Relatively low surface water temperatures found near East Cape by Garner (1959) were associated by

him with upwelling 'possibly by southward moving water impinging against the shelf edge which extends well offshore from East Cape to the Ranfurly Bank'. Several typical thermograph traces collected from M.V. Hawea which show this phenomenon are given in Fig. 51 and from these it can be seen that the low temperature water can exist over a considerable distance near East Cape. The lowest recorded surface temperature and the surface temperature of the adjacent warmer water near East Cape are shown for different times in the period between November 1967 to October 1968 (Fig. 52). The horizontal temperature changes are larger in summer than in winter and this most likely results from the presence of a strong summer thermocline (Fig. 53), which increases the vertical temperature gradient in the upper layers and thus the horizontal surface temperature gradient near the upwelling. Sub-surface hydrological observations collected in February/March 1969 confirm Garner's interpretation of the low temperatures being the result of upwelling in this region. The isohalines (Fig. 54), the isotherms and depth of the thermocline (Fig. 55) drawn from these observations slope upwards into the shallow water. The isobaths of the depth of the upper mixed layer (top of the thermocline) for January/ February 1969 data (Fig. 9) show that near East Cape the thermocline sloped sharply downwards away from the coast. These isobaths (Fig. 9) were contoured from spot readings only and possibly in the centre of the upwelling the thermocline would be broken by the water upwelling from below.

CONCLUSION

The circulation off the East Coast of New Zealand forms an essential part of the circulation in the Southwest Pacific Ocean with New Zealand lying, as it does, athwart the general easterly water movement. It is therefore of value to examine how this circulation is integrated with the general circulation in the Southwest Pacific and in so doing assess the present knowledge of the circulation off the east coast.

Reid's (1961) analysis of the geostrophic circulation at the surface relative to 1000 dbars in the Pacific Ocean shows a general west to east flow past New Zealand, with the East Auckland and East Cape Currents represented by a southwards protrusion of the 1.4 dyn.m contour. Garner (1969) used all the then available NZOI data collected in a series of block surveys (Garner 1967a, b, 1970; Ridgway 1970a) to examine the offshore circulation around New Zealand. He showed that there are large spatial fluctuations in the general west-east flow north of New Zealand, with a strong flow southwards down the east coast of New Zealand north of Banks Peninsula. To aid further discussion of the circulation, a generalised figure of the mean surface currents is shown in Fig. 1.

An examination of the depth of the reference surface, to be used with the geostrophic method, using Defant's method in conjunction with the flow of Intermediate Water and supported by the depth of maximum correlation between the slope of the sea surface relative to different depths and the 200 m temperature. has been made by Heath (1972c). This showed that off the east coast of New Zealand the reference depth was deeper than the 1000 dbar surface used by Reid (1961) and Garner (1969) in this area and thus the speeds calculated from their geostrophic circulation patterns would be under-estimates of the actual speed but in the correct direction.

Reid (1961) showed that the circulation off the east coast of New Zealand is closely linked to the circulation off the east coast of Australia, with part of the flow of warm Subtropical Water eastwards from the East Australian Current System passing around North Cape and giving rise to the East Auckland Current. Garner (1969) showed the East Auckland Current as flowing along the east coast of the North Island between North Cape and East Cape (see Fig. 1). The present study has shown that near East Cape the main flow of the East Auckland Current (i.e. that part north of approximately 37°S latitude) turns north, while the rest turns in a clockwise direction around East Cape, giving rise to the southward flowing East Cape Current, which adjusts the mass field such that a warm saline tongue protrudes southwards from East Cape.

The warm saline water of the Southland Current, which is also derived from the East Australian Current System, flows eastwards both through Foveaux Strait and south of Stewart Island before turning northward along the continental shelf and slope on the east coast of the South Island (Heath 1972a). The Subtropical Water over the continental shelf and upper part of the continental slope off the east coast meets the less saline Subantarctic Water further offshore on the slope in the Southland Front. The water in the zone of large horizontal gradients, together with the coastal water further inshore, moves northwards as the Southland Current. South of Banks Peninsula the Southland Current is recognised at the surface by mainly warm, saline, Subtropical Water, bounded inshore by coastal water and offshore by Subantarctic Water. In its passage northwards through the western side of the Mernoo Gap, cool, low salinity Subantarctic Water is brought closer to the surface, (some of the Southland Current water most likely also turns offshore near Banks Peninsula), and north of Banks Peninsula the Southland Current is recognised by cool, low salinity water bounded inshore by the warm saline water which flows northwards on the continental shelf, also in the Southland Current and offshore by warm saline water derived from the East Cape Current. The Southland Current branches into two components near Kaikoura, with one component meandering towards the east and the other component continuing northwards from Kaikoura as a shallow flow between the southern end of the Hikurangi Trench and the coast (Heath 1972a). This northward extending component diverges seawards north of Kaikoura, most of the water sweeping across the southern end of Cook Strait and continuing northwards along the east coast of the North Island, while the rest enters the southwestern side of Cook Strait around Cape Campbell. The relative strength of these two components, one sweeping across the southern end of Cook Strait and the other entering Cook Strait, is most likely dependent on the strength of the component of the East Cape Current found over the Cook Strait Canyon (Heath 1971). The cool, low salinity water entering Cook Strait near Cape Campbell is mainly confined to the continental shelf. This cool, low salinity water mixes with both the warmer, more saline, surface and sub-surface Subtropical Water of the D'Urville Current (which is also derived from the East Australian Current System), which flows into Cook Strait from the north, and with the water over the Cook Strait Canyon, which has its origin in the East Cape Current. Mixed water derived from all three currents travels eastward across Cook Strait and around Cape Palliser to meet the water of the Southland Current that diverges seawards between Kaikoura and Cook Strait on its seaward side. The Southland Current turns eastwards south of Hawke Bay (usually near Cape Turnagain), and the combined Southland and East Cape Current waters, after flowing south, turn east, then northeast, at about the latitude of Cape Palliser, to form the outer arm of the East Cape Current System. It has been shown here that this outer arm is not as well developed as the inshore arm of the East Cape Current and is defined as far north as East Cape where the water becomes indistinguishable from the water of the East Auckland Current that turns north near East Cape. Where the East Cape Current turns northeast a large permanent anticyclonic eddy is formed. The presence of small eddies (dashed eddy in Fig. 1), which are shed off periodically from this larger eddy, has been shown here. These eddies are guided by the bottom topography towards Kaikoura where they influence the northward passage of the Southland Current. It is suggested that 50-70 days periodicity of these eddies is linked to the periodicity of the East Australian Current System, with the flow clockwise around East Cape being in the form of a series of pulses.

The warm, saline Subtropical Water of the East Cape Current meets the cool, less saline water of the Subantarctic Water in the Subtropical Convergence, which in this region extends along the Chatham Rise and northwards towards Kaikoura. The eastern boundary of the tongue of low salinity, cool water, which defines the Southland Current north of Banks Peninsula, is the northward extension of the Subtropical Convergence. The western or inshore arm of this tongue has been shown to be the Southland Front, which is formed between the inshore Subtropical Water and the Subantarctic Water components of the Southland Current.

ACKNOWLEDGMENTS

The writer is most grateful to the many individuals and establishments who have helped in this study. In particular I would like to thank: the extremely helpful masters (Captains R.D. and D.K. Matheson), officers and crew of M.V. *Taranui* from which observations were obtained; the N.Z. Oceanographic Institute cruise personnel who aided in collecting the data; the pilots of the Wellington Aero Club for their skilful flying and navigation during the aerial radiometer measurements; the Union Steam Shipping Company from whose vessels thermograph records and water samples were collected; the Applied Mathematics Division of the Department of Scientific and Industrial Research for computer facilities; Mr N.M. Ridgway, Mr J.W. Brodie, Dr A.E. Gilmour and Mr B.R. Stanton, all of N.Z. Oceanographic Institute for much helpful discussion; Miss P. Lawrence of N.Z. Oceanographic Institute and the Chief Cartographer, Information Service, Department of Scientific and Industrial Research, for preparing the many figures; Mrs R.M. Thompson of the N.Z. Oceanographic Institute for her care taken in typing the manuscript.

REFERENCES

- BARKER, P.H.; KIBBLEWHITE, A.C. 1965: Physical oceanographic data from the *Tui* Cruise 1962. N.Z. Jl Sci. 8(4): 604-34.
- BRADFORD, J.M. 1972: Systematics and ecology of New Zealand central east coast plankton sampled at Kaikoura. Mem. N.Z. oceanogr. Inst. 54. (Bull. N.Z. Dep. scient. ind. Res. 207).
- BRODIE, J.W. 1960: Coastal surface currents around New Zealand. N.Z. Jl Geol. Geophys. 3(2): 235-52.
- BROWN, N.L.; HAMON, B.V. 1961: An inductive salinometer. Deep Sea Res. 8 : 65-75.
- BURLING, R.W. 1961: Hydrology of circumpolar waters south of New Zealand. Mem. N.Z. oceanogr. Inst. 10. (Bull. N.Z. Dep. scient. ind. Res. 143).
- DEACON, G.E.R. 1937: Hydrology of the Southern Ocean. 'Discovery' Rep. 15 : 1-124.
- DEACON, G.E.R. 1945: Water circulation and surface boundaries in the ocean. Q. Jl R. met. Soc. 71 : 11-25.
- EKMAN, V.W. 1923: Über Horizontalgerleulation bei windergeugten Meeresstroungen. Ark. Mat. Astr. Fys. 17(26): 1-74.
- FLEMING, C.A. 1952: Some South Pacific sea-bird logs. Emu 49 : 169-88.
- FUGLISTER, F.C.; VERONIS, A.C. 1965: A new method of tracking the Gulf Stream. Limnol. Oceanogr. Suppl. 10: 115-24.
- GARNER, D.M. 1953: Physical characteristics of inshore surface waters between Cook Strait and Banks Peninsula, New Zealand. N.Z. Jl Sci. Technol. Sect. B. 35(3): 239-46.
- GARNER, D.M. 1959: The Subtropical Convergence in New Zealand surface waters. N.Z. Jl Geol. Geophys. 2(2): 315-37.
- GARNER, D.M. 1961: Hydrology of New Zealand coastal waters, 1955. Mem. N.Z. oceanogr. Inst. 8. (Bull. N.Z. Dep. scient. ind. Res. 138).

- GARNER, D.M. 1967a: Hydrology of the southern Hikurangi Trench region. Mem. N.Z. oceanogr. Inst. 39. (Bull. N.Z. Dep. scient. ind. Res. 177).
- GARNER, D.M. 1967b: Hydrology of the Southeast Tasman Sea. Mem. N.Z. oceanogr. Inst. 48. (Bull. N.Z. Dep. scient. ind. Res. 181).
- GARNER, D.M. 1969: The geopotential topography of the ocean surface around New Zealand. N.Z. Jl mar. Freshwat. Res. 3(2): 209-19.
- GARNER, D.M. 1970: Oceanic hydrology northwest of New Zealand. Hydrology of the northeast Tasman Sea. Mem. N.Z. oceanogr. Inst. 58. (Bull. N.Z. Dep. scient. ind. Res. 202).
- GARNIER, B.J. 1958: 'The Climate of New Zealand'. Edward Arnold Ltd, London. 191pp.
- GULDBERG, C.M.; MOHN, H. 1876: Etudes sur les mouvements de l'atmosphere. Smithson. misc. Collns 3 : 122-248.
- HAMON, B.V. 1968: Spectrum of sea level at Lord Howe Island in relation to circulation. J. geophys. Res. 73(22): 6925-7.
- HAMON, B.V.; KERR, J.D. 1968: Time and space scales of variations in the East Australian Current from merchant ship data. Aust. J. mar. Freshwat. Res. 19: 101-6.
- HEATH, R.A. 1968: Geostrophic currents derived from oceanic density measurements north and south of the Subtropical Convergence east of New Zealand. N.Z. Jl mar. Freshwat. Res. 2: 659-77.
- HEATH, R.A. 1969: Drift card observations of currents in the central New Zealand region. N.Z. Jl mar. Freshwat. Res. 3: 3-12.
- HEATH, R.A. 1970: An occurrence of low water temperature on the North Canterbury coast (Note). N.Z. Jl mar. Freshwat. Res. 4(2): 223-6.
- HEATH, R.A. 1971: Hydrology and circulation in central and southern Cook Strait. N.Z. Jl mar. Freshwat. Res. 5(1): 178-99.

- HEATH, R.A. 1972a: The Southland Current. N.Z. Jl mar. Freshwat. Res. 6(4): 497-533.
- HEATH, R.A. 1972b: Oceanic upwelling produced by northerly winds on the north Canterbury coast, New Zealand. N.Z. Jl mar. Freshwat. Res. 6(3): 343-51.
- HEATH, R.A. 1972c: Choice of reference surface for geostrophic currents around New Zealand. N.Z. Jl mar. Freshwat. Res. 6(1 & 2) : 148-77.
- HEATH, R.A. 1972d: Wind-derived water motion off the east coast of New Zealand between Kaikoura Peninsula and Cape Campbell. N.Z. Jl mar. Freshwat. Res. 6(3): 352-64.
- HEATH, R.A. 1973: Present knowledge of the oceanic circulation and hydrology around New Zealand, 1971. *Tuatara* 20(3): 125-40.
- HOUTMAN, Th.J. 1965: Winter hydrological conditions south of Kaikoura Peninsula. N.Z. Jl Geol. Geophys. 8(5): 807-19.
- HOUTMAN, ThJ. 1966: A note on the hydrological regime in Foveaux Strait. N.Z. Jl Sci. 9(2): 472-83.
- HYDROGRAPHIC DEPARTMENT, 1958: 'The New Zealand Pilot'. 12th Edition, London. 500 pp.
- JILLETT, J.B. 1969: Seasonal hydrology of waters off the Otago Peninsula, southeastern New Zealand. N.Z. Jl mar. Freshwat. Res. 3: 349-75.
- NEUMANN, G. 1955: Dynamics of wind driven ocean currents. Met. Pap. N.Y. Univ. 2(4): 1-33.
- NEUMANN, G. 1960: On the effect of bottom topography on ocean currents. Dt. hydrogr. Z. 13(3): 132-41.

- NEUMANN, G.; PIERSON, W.J. 1966: 'Principles of Physical Oceanography'. Prentice-Hall Inc., Englewood Cliffs, New Jersey. 545 pp.
- OXNER, M. 1920: Chloruation par le methode Knudsen. Bull. Commn int. Explor. scient. Mer Mediterr. 3.
- PATZERT, W.C. 1969: Eddies in Hawaiian waters. Hawaii Inst. Geophys. Tech. Rep. HIG-69-8 : 1-51.
- REID, J.L. 1961: On the geostrophic flow at the surface of the Pacific Ocean with respect to the 1000 decibar surface. $Tellus \ 13(4) : 490-502.$
- RIDGWAY, N.M. 1970a: Hydrology of the Southern Kermadec Trench region. Mem. N.Z. oceanogr. Inst. 56. (Bull. N.Z. Dep. scient. ind. Res. 205).
- RIDGWAY, N.M. 1970b: Aerial radiometry of sea surface temperatures on the east coast, North Island, New Zealand. N.Z. Jl mar. Freshwat. Res. 4(4): 474-8.
- RIDGWAY, N.M. (in press): Hydrology of the Bounty Islands region. Mem. N.Z. oceanogr. Inst.
- SDUBBUNDHIT, Cha Erb; GILMOUR, A.E. 1964: Geostrophic currents derived from oceanic density over the Hikurangi Trench. N.Z. Jl Geol. Geophys. 7(2): 271-8.
- STOMMEL, H. 1965: 'The Gulf Stream'. University of California Press, Berkeley. 248 pp.
- SVERDRUP, H.U. 1941: The influence of bottom topography on the ocean currents. J. appl. Mech. (von Karman Anniversary Vol.): 66-75.
- SVERDRUP, H.U.; JOHNSON, M.V.; FLEMING, R.M. 1942:
 'The Oceans, Their Physics, Chemistry and General Biology'. Prentice-Hall Inc., Englewood Cliffs, New Jersey. 1087 pp.

APPENDIX I

STATION CIRCUMSTANCES

Stn No.	Date Time N.Z. Start Finish	Latitude (S)	Longitude (E)	Depth (m)	D809 D810	21/2005 21/2200 21/2315 21/2355	41 33 41 20.5	176 00 176 00	1160 160
Septer	nber 1967				D811 D812	22/0510 22/0635 22/0857 22/0939	40 54 40 30.5	176 49 176 49.5	1060 162
G139	19/1436 19/2102	41 45	175 02	1939	D813	22/1535 22/1700	40 00	177 40	980
G140	19/2215 20/0241	41 50	$175\ 15$	1991	D814	22/1940 22/2030	39 35	177 54	360
G141	20/0437 20/0736	41 12	1'75 28	2670	D815	23/0157 23/0350	39 00	178 31	1350
G142	20/1438 20/	42 24.8	173 56.5	1211	D816	23/0950 23/105/	38 14	178 49	220
G143	21/1447 21/1606	42 26.1	173 47.6	95	D817	23/1423 23/1550	37 44	178 58	550
G145	21/2014 21/2133	42 24.6	174 21.6	1566		1000			
G147	22/0337 22/0510	42 43	174 48	1514	March	1969			
G148	22/0716 22/0828	43 03	174 48	686	D818	1/0626 1/0845	36.00	178 00	1800
G149	22/1131 22/1227	$43\ 27.5$	173 58	697	D819	1/1137 1/1533	36 30	178 00	2500
G150	22/2006 22/2117	42 08	1'74 33	1463	D820	1/1810 1/2006	37 00	178 00	2000
G151	22/2315 22/2400	41 47	174 34	124	D821	2/1005 2/1255	37 30	180 00	4400
G152	23/0143 23/0314	41 41	$174\ 37$	284	D822	2/1753 2/1939	37 28	178 59 W	2340
Novon	hor/December 1069	2			D823	2/2255 3/0055	37 00	179 00 W	2880
INOVEI	iner, December 1900	0			D824	3/0648 3/0855	37 00	180 00 W	3500
D745	27/0438 27/0506	42 07.8	173 58.3	18	D825	3/1304 3/1503	36 30	179 30 W	4480
D746	27/0534 27/0610	4210.2	174 32	88	D826	3/1900 3/2220	37 57	178 59 W	6000
D747	27/0726 27/1014	42 17	17416	960	D827	4/0445 4/0653	36 01	179 59	2690
D748	27/1140 27/1330	42 25	174 39	2200	D828	4/1200 4/1633	35 58	179 01	2500
D749	27/1505 27/1730	42 35	174 48	1800	D829	4/2050 4/2305	36 30	179 00	2500
D750	27/1933	42 50	174 29	1270	D830	5/0223 5/0452	37 00	179 00	2500
D751	27/2325 27/0130	42 38	174 09	2200	D831	5/0737 5/0955	37 15	178 40	1300
D752	28/0310 28/0447	42 29.4	173 53	1240	D832	5/1430 5/1603	37 15	178 00	1480
D753	28/0547 28/0623	42 25	173 45	29	D833	5/1807 5/1928	37 28 5	178 20	760
D754	28/0702 28/0730	42 27	173 40	55	D834	5/2110 5/2150	37 36	178 38	145
D755	28/0756 28/0855	42 30	173 41	410	D835	5/2325 6/0050	37 44	178 58	650
D756	28/0930 28/1125	42 32	173 48	1200	D836	6/0325 6/0721	37 34	179 22	1305
D757	28/1217 28/1525	42 37	173 57	1760	D837	6/1400 6/1535	38 30	178 53	1950
D758	28/1651 28/1857	42 35	173 44	1280	D838	6/1822 6/2310	38 30	179 30	3560
D759	28/1940 28/2059	42 35.3	173 36.7	710	D839	7/0335 7/0735	38 30	179 45	3600
D760	28/2134 28/2232	42 40	173 41.6	310	D840	7/1058 7/1426	38 30	179 99 W	3520
D761	28/2300 28/2345	42 43	173 38.6	120	D841	8/0040 8/0315	39 30	180 00 W	2200
D762	29/0008 29/0145	42 42.5	$173 \ 35$	490	D842	8/0828 8/1105	39 30	179 00	3400
D763	29/0436 29/0505	42 46.7	$173\ 24.2$	18	D843	8/1400 8/1525	39 34	178 27.5	1700
D764	29/0636 29/0728	42 54.5	173 39	230	D844	9/0025 9/0205	40 30	177 30	1790
D765	29/1015 29/1118	43 98	174 05	6.80	D845	9/0430 9/0624	40 30	178 00	2100
D766	29/1405 29/1510	43 23	174 33	480	D846	9/1120 9/1335	40 30	179 00	3200
D767	29/1611 29/1703	43 26	174 21	540	D847	9/1700 9/1920	41 00	179 00	3100
D768	29/1827 29/1927	43 31	174 06.5	610	D848	10/0120 10/0623	41 00	178 00	3000
D769	29/2255 29/2400	$43 \ 37.5$	173 36	85	D849	10/0939 10/1152	41 30	178 00	2900
D770	30/0254 30/0330	43 44.5	173 09	25	D850	10/1704 10/1902	42 00	178 00	2660
D771	30/0543 30/0627	43 45	$173 \ 33$	80	D851	11/0140 11/0623	41 30	177 00	2850
D772	30/0925 30/1020	43 45	174 00	230	D852	11/1100 11/1235	41 22.5	176 32	1820
D773	30/1353 30/1500	43 45	$174\ 38$	520	D853	11/1420 11/1535	41 23	176 12	1010
D774	30/1820 30/1935	44 07	$174 \ 38$	540	D854	11/2105 11/2300	42 00	176 00	2252
D775	30/2035 30/2135	44 07	174 50	500	D855	12/0206 12/0422	42 15	176 30	2690
D776	1/0005 1/0145	43 44	174 49	455	D856	12/0730 12/0858	42 26	176 00	1790
D777	1/0847 1/1040	42 43	174 00	1500	D857	12/1400 12/1530	42 26	175 00	2100
D783	2/0940 2/1220	41 57.5	175 16	2015	D858	12/1853 12/2020	42 30	174 30	1990
D784	2/1355 2/1520	41 47	$175\ 23$	1090	D859	12/2320 13/0100	42 35.5	174 05	2100
D785	2/1612 2/1728	41 41.5	175 16	400	D860	13/0545 13/0644	42 30	173 40	1160
D786	2/1800 2/1910	41 46	175 09.7	770	D861	13/0923 13/1017	42 17	174 10	1120
Echer	ang 1000				D862	13/1230 13/1355	42 08	174 38	1760
reput	laly 1909				D863	13/1555 13/1725	42 00	175 00	2150
D808	21/1555 21/1700	41 40.5	$175\ 28$	550	D864	14/0040 14/0135	41 41	175 12	600

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Under station numbers below are listed measured depths, temperatures, and salinities. These are followed by derived values of density, dvnamic

- D is the sampling depth in metres.
- T is the sampling temperature in °C x 100.
- S is the sample salinity in ‰ x 100.
- σ_{t} is the density reduced to surface pressure isothermally.
- σ_{stp} is the *in situ* density. The ' σ ' value is derived from the relative density, ρ , from the relation $\sigma = (\rho - 1) \times 10^5$.

height anomaly, sound velocity and potential energy anomaly. The meaning of the table headings is as follows.

- $\Sigma\Delta h$ is the anomaly of the geopotential distance from the sea surface to the sample depth in dynamic metres x 100.
- C is the *in situ* sound velocity in $m s^{-1} x 10$.
- Cm is the integral mean sound velocity between the sea surface and the sample depth in $m s^{-1}x 10$.
- K is the correction $(m \ge 10)$ to be applied to an echo sounding reading of D on a machine calibrated for a velocity of 1 500 m s⁻¹.

 $\Sigma\Delta X$ is the potential energy anomaly from the sea surface to the sample depth in kgm m s.⁻⁴x 10³.

D	Т	S	σ _t	^C stp	ΔΔJ	С	Cm	K	$\Sigma \Delta X$
G139									
0	1186	3500	2663	2663	0.0	14970	14970	0	0.0
6	1187	3502	2665	2668	0.9	14972	14971	-0	2.5
15	1188	3502	2665	2671	2.1	14974	14972	-0	15.8
30	1186	3502	2665	2679	4.2	14975	14973	- 1	63.3
45	1149	3493	2665	2685	6.3	14964	14972	-1	142.5
60	1130	3493	2669	2696	8.4	14959	14969	-1	252.3
G140									
0	1164	3498	2666	2666	0.0	14962	14962	0	0.0
9	1171	3497	2664	2668	1.3	14966	14964	-0	5.7
22	1180	3497	2662	2672	3.1	14971	14966	-0	34.3
43	1178	3500	2665	2684	6.1	14973	14969	- 1	131.2
G141									
0	1115	3486	2666	2666	0.0	14943	14943	0	0.0
10	1115	3486	2666	2670	1.4	14945	14944	-0	7.0
24	1117	3487	2666	2677	3.3	14947	14945	-1	40.1
49	1113	3487	2667	2689	6.8	14951	14947	- 2	167.2
74	1117	3488	2667	2700	10.3	14957	14949	- 2	381.6
98	1111	3487	2667	2712	13.7	14958	14951	- 3	670.3
147	1105	3487	2668	2735	20.5	14964	14955	-4	1511.1
164	1067	3478	2668	2742	22.9	14952	14955	-5	1882.3
259	935	3490	2700	2818	34.9	14920	14948	-9	4420.1
G142									
0	1091	3420	2619	2619	0.0	14926	14926	0	0.0
10	987	3418	2635	2640	1.8	14890	14908	- 1	8.9
25	1035	3454	2655	2667	4.1	14915	14905	-2	50.5
50	1142	3491	2665	2687	7.8	14961	14922	- 3	187.0
75	1117	3489	2668	2702	11.3	14957	14934	- 3	406.0
100	1073	3480	2669	2714	14.8	14944	14938	-4	709.7
150	953	3461	2675	2743	21.6	14906	14934	-7	1561.7
194	960	3463	2675	2763	27.5	14916	14928	-9	2578.0
292	919	3460	2679	2812	40.6	14917	14924	-15	5757.5
490	833	3452	2687	2909	66.5	14915	14921	-26	15886.3

D	Т	s	σt	°stp	σΔ3	С	Cm	К	ΣΔΧ	D	Т	S	σt	°stp	ΣΔD	С	Cm	K	$\Sigma \triangle X$
G143										G151									
0	1001	3372	2597	2597	0.0	14888	14888	0	0.0	0	1115	3467	2651	2651	0.0	14941	14941	0	0.0
10	976	3398	2622	2626	1.9	14884	14886	-1	9.6	10	1115	3467	2651	2656	1.5	14942	14942	-0	47.8
25	938	3432	2654	2666	4.4 8.0	14877	14882	-2	188.5	25	1077	3460	2652	2664	3.8	14931	14939	-1	182.6
75	927	3448	2669	2703	11.5	14883	14880	-6	404.3	75	1038	3476	2672	2706	10.8	14927	14934	- 2	393.8
C145										100	994	3471	2676	2721	14.1	14914	14929	- 5	000.0
0145	1100	7500	2664	2664	0.0	14069	14069	0	0.0	G152									
10	1182	3497	2662	2667	1.4	14968	14968	-0	7.1	0	1269	3490	2640	2640	0.0	14997	1/1007	0	0.0
25	1187	3499	2662	2674	3.6	14975	14971	-0	44.6	9	1265	3490	2640	2644	1.5	14997	14997	-0	6,6
50	1143	3495	2668	2690	7.1	14962	14970	-1	176.5	23	1277	3491	2639	2649	3.8	15003	14999	-0	181.9
99	1139	3495	2668	2700	13.9	14969	14968	-2	686.3	47	1268	3491	2641	2662	7.7	15005	15001	0	403.2
140	1095	3485	2669	2732	19.6	14958	14967	- 3	1369.3	93	1249	3491	2644	2686	15.3	15005	15005	0	709.2
236	1040	3487	2680 2678	2787	32.6	14955	14963	-6	3812.9	132	1170	3488	2657	2717	21.4	14985	15002	0	1594.9
472	835	3453	2687	2901	63.6	14913	14933	-18	14765.5	D745									
C1 4 7										0	1326	3393	2553	2553	0 0	15004	15004	0	0.0
6147										15	1280	3417	2581	2588	3.5	14995	14999	-0	26.2
10	1199	3502	2663	2663	0.0	14975	14975	-0	0.0	D746									
24	1203	3503	2663	2673	3.4	14979	14976	- 0	40.9	0	1:170	7410	2500	0500	0.0	14070	14070		0.0
48.	1196	3505	2665	2687	6.8	14982	14979	-1	163.4	25	1239	3418	2590	2590	0.0	14978	14978	-0	65.3
97	1194	3504	2665	2098	10.3	14984	14980	-1	576.9	50	1190	3440	2616	2639	10.1	14972	14977	-1	249.8
146	1194	3507	2667	2733	20.7	14997	14985	-1	1511.7	75	1123	3448	2635	2669	14.6	14954	14972	-1	525.4
190	1175	3504	2669	2754	26.9	14997	14988	-2	2556.1	D747									
476	852	3461	2691	2907	65.8	14903	14968	-10	15418.2	0	1243	3463	2624	2624	0.0	14985	14985	0	0.0
										25	1179	3460	2634	2645	4.4	14967	14976	-0	54.6 201 5
G148										49	1084	3451	2644	2666	8.3	14936	14964	-1	437.0
0	1126	3478	2658	2658	0.0	14946	14946	0	0.0	99	1085	3472	2667	2694	12.2	14943	14956	-2	746.6
24	1119	3484	2658	2603	3.5	14945	14948	-1	42.1	148	985	3466	2673	2740	22.5	14918	14943	-6	1582.0
48	1179	3502	2666	2688	6.9	14976	14957	-1	165.3	188	941 874	3460	2676	2761	27.9	14907	14936	-8	5552.7
72	1193	3505	2666	2698 2731	10.3	14984	14964	-2	367.3	382	816	3447	2685	2859	53.2	14897	14925	-14	9697.0
183	1084	3484	2670	2752	25.9	14962	14972	-3	2351.6	477	770	3445	2691	2908	65.2	14889	14911	-28	14852.9
260	975	3470	2678	2796	36.4	14934	14965	-6	4679.1	665 765	727	3449	2700	3002	88.2	14903	14907	-41	36444.3
G149										865	640	3447	2710	3103	111.3	14901	14906	- 54	45648.6
0	1172	3500	2666	2666	0.0	14965	14965	0	0.0	D749									
10	1174	3502	2667	2672	1.4	14968	14966	-0	6.9	0748	1401	7 4 7 1	2504	25.04					0.0
24	1172	3500	2666	2677	3.3	14968	14967	-1	39.9	25	1421	3471	2594	2504	0.0	14045	15045	0	58.3
48	1118	3493	2609	2691	9.9	14960	14966	-1	356.4	49	1191	3471	2640	2662	8.6	14976	14993	-0	205.2
96	1119	3493	2671	2714	13.2	14961	14962	-2	631.7	74	1161	3471	2646	2679	12.7	14970	14987	-1	771.4
144	1091	3489	2673	2738	19.8	14959	14961	-4	1418.2	147	994	3469	2600	2705	23.3	14942	14979	-1	1622.0
100	1075	5400	2075	2/43	21.9	14955	14901	-4	1749.2	620	727	3455	2705	2986	82.6	14896	14921	-32	24350.6
G150										852	594 456	3448 3449	2717	3105	107.9	14881	14912	-50	63805.8
0	999	3436	2647	2647	0.0	14895	14895	0	0.0	1166	411	3451	2741	3274	137.4	14858	14900	-77	72607.4
10	1007	3439	2648	2653	1.6	14900	14898	-1	7.8 47 1	1283	369	3453	2747	3334	146.8	14860	14897	-88	93848.1
49	1099	3486	2669	2691	7.2	14946	14937	-2	171.9	13/8	551	3455	2751	3382	154.1	14863	14894	-97	
74	1113	3488	2668	2701	10.6	14956	14941	-3	384.5	D749									
98	1100	3490 3475	2672	2716	13.9	14954	14945	-4 -5	1332.7	0	1317	3471	2615	2615	0.0	15011	15011	0	0.0
296	931	3466	2682	2816	40.6	14922	14937	-12	5902.4	25	1204	3470	2637	2648	4.4	14977	14994	-0	55.4
488	836	3460	2693	2914	64.9	14918	14930	-23	15448.6										

D	Т	S	σ _t	°stp	ΣΔD	С	Cm	K	ΣΔΧ	D	Т	S	σt	₀stp	ΣΔD	С	Cm	К	ΣΔΧ
D749 c	ontinued									D752									
50 75 100 145 284 379	1198 1170 1112 968 896 822	3470 3470 3463 3461 3454	2638 2643 2654 2674 2684 2690	2660 2677 2699 2739 2813 2862	8.6 12.7 16.7 23.1 41.4 53.3	14978 14973 14956 14911 14907 14894	14986 14982 14978 14964 14937 14928	-0 -1 -3 -12 -18	212.0 469.3 814.1 1606.7 5522.5 9483.7	0 25 50 75 100 149	1235 1138 1088 972 926 887	3451 3452 3454 3445 3445 345 345	2616 2635 2646 2659 2667 2677	2616 2646 2668 2693 2712 2745	0.0 4.4 8.5 12.4 16.0 22.6	14981 14952 14938 14899 14886 14880	14981 14966 14955 14943 14930 14915	0 -1 -3 -5	0.0 55.5 209.2 448.7 763.3
474 571 768 865 955 1044 1141	771 718 613 557 517 467 417	3450 3449 3447 3447 3448 3448 3450	2694 2701 2714 2721 2727 2732 2739	2910 2961 3064 3116 3162 3209 3261	65.0 76.5 98.4 108.4 117.2 125.5 134.0	14888 14884 14874 14867 14866 14861 14855	14920 14915 14905 14901 14898 14895 14892	-25 -33 -48 -57 -65 -73 -82	14441.0 20445.4 35105.7 43297.0 51341.3 59652.5 68948.1	195 291 384 476 574 772 868	887 844 816 796 762 716 618	3451 3448 3447 3446 3443 3449 3448	2678 2682 2685 2688 2690 2702 2714	2766 2814 2860 2904 2951 3052 3109	28.7 41.3 53.2 65.0 77.5 101.9 112.9	14888 14887 14891 14899 14901 14916 14894	14907 14901 14898 14897 14898 14901 14901	-12 -19 -26 -33 -39 -51 -57	2637.2 5689.1 9734.6 14795.9 21348.8 37786.2 46758.6
1240 1339 1437 1620	373 334 314 2€ 6	3453 3454 3456 3460	2746 2751 2754 2762	3314 3364 3412 3503	142.1 149.6 156.8 169.3	14855 14855 14863 14872	14889 14887 14885 14883	-92 -101 -110 -127	78540.3 88264.6 98170.4 117287.6	964 1052 <u>D753</u>	554 510	3447 3448	2721 2727	3160 3207	123.0 131.7	14882 14879	14900 14898	-64 -71	55995.5 64803.8
D750 0 24 48 72	1270 1194 1195	3474 3471 3470	2627 2639 2638	2627 2650 2660	0.0 4.1 8.1	14995 14972 14977	14995 14984 14979	0 -0 -1	0.0 49.1 192.1	0 10 20 D754	1355 1279 1230	3414 3411 3419	2564 2576 2592	2465 2581 2601	0.0 2.3 4.5	15016 14992 14978	15016 15004 14995	0 0 -0	0.0 11.5 44.0
96 144 184 275 364 453	1043 962 946 884 815 755	3469 3464 3464 3461 3454 3450	2665 2675 2678 2686 2691 2697	2708 2741 2762 2811 2857 2903	15.7 22.3 27.6 39.3 50.3	14973 14931 14909 14910 14901 14888 14879	14970 14971 14954 14945 14932 14922 14915	-2 -4 -7 -13 -19	738.6 1531.8 2399.2 5084.8 8612.5	0 10 20 30 40	1242 1250 1247 1242 1244	3390 3395 3400 3421 3430	2567 2570 2574 2591 2598	2567 2574 2583 2605 2616	0.0 2.3 4.6 6.8 8.9	14975 14980 14981 14984 14987	14975 14978 14979 14980 14982	0 -0 -0 -0 -0	0.0 [°] 11.6 45.9 100.5 173.1
546 638 729 827 915 998 1096	716 665 599 536 507 484 426	3449 3448 3447 3447 3447 3448 3450	2702 2708 2716 2723 2727 2730 2738	2950 2998 3048 3101 3145 3186 3240	71.9 82.3 92.0 101.9 110.3 118.1 126.7	14880 14874 14862 14852 14855 14860 14853	14909 14904 14900 14894 14891 14888 14885	-33 -41 -49 -58 -67 -75 -84	18406.0 24549.0 31208.8 38861.3 46208.7 53633.7 62730.0	D755 0 49 75 97 146 190	1291 1100 1060 1034 1002 952	3378 3460 3400 3457 3460 3458	2549 2648 2609 2658 2666 2672	2549 2670 2642 2702 2732 2759	0.0 10.0 14.2 18.3 25.5 31.6	14990 14943 14924 14927 14923 14911	14990 14966 14956 14948 14940 14935	0 -1 -2 -3 -6 -8	0.0 244.5 502.0 852.7 1720.7 2753.8
D751										384	888	3457	2682	2856	57.7	14919	14925	-19	10234.4
0 25 49 74 97 146 194 291 386 480 579 777 876 967 1056 1156 1256	1242 1197 1138 1083 1019 980 952 868 825 759 709 607 567 523 481 452 394	3466 3467 3470 3465 3465 3465 3455 3455 3455 3450 3449 3447 3447 3447 3447	2626 2636 2658 2667 2673 2678 2690 2696 2703 2715 2720 2725 2731 2735 2731 2735 2742	2626 2647 2671 2692 2711 2739 2766 2915 2966 3069 3119 3166 3213 3262 3317	0.0 4.3 8.2 12.0 15.3 22.1 28.5 41.0 52.8 64.2 75.8 97.6 107.9 117.0 125.5 134.6 143.2	14985 14974 14957 14942 14916 14914 14898 14895 14885 14885 14882 14873 14873 14873 14873 14873	14985 14980 14973 14965 14957 14944 14937 14927 14919 14913 14908 14900 14897 14895 14893 14891 14889	0 -0 -1 -2 -3 -5 -8 -14 -21 -28 -35 -52 -60 -68 -75 -84 -93	0.0 53.9 197.9 431.6 715.2 1536.4 2626.2 5648.5 9647.3 14590.6 20727.8 35528.4 44027.6 52403.4 60985.5 71105.4 81521.3	D756 0 25 50 75 96 142 289 383 476 573 769 870 963 1051 1143	1283 1189 1114 972 940 921 871 828 804 768 715 600 554 486 472	3450 3455 3448 3448 3452 3452 3452 3448 3447 3444 3449 3448 3449 3449	2606 2626 2661 2668 2673 2684 2687 2690 2702 2716 2722 2731 2732	2606 2637 2665 2695 2712 2737 2858 2903 2950 3050 3112 3161 3211 3254	0.0 4.7 8.9 12.8 15.8 22.1 41.6 53.9 65.8 78.2 102.4 113.8 123.4 131.9 140.4	14997 14970 14947 14900 14891 14893 14893 14895 14902 14904 14904 14916 14887 14882 14869 14880	14997 14983 14971 14955 14942 14926 14900 14905 14905 14905 14906 14906 14904 14901 14899	0 -0 -1 -2 -4 -7 -17 -24 -30 -36 -48 -55 -62 -69 -77	0.0 58.4 218.2 458.8 713.7 1464.4 5680.6 9785.5 14926.1 21421.0 37638.6 46960.8 55774.9 64364.6 73711.4
1355 1453 1820	375 330 238	3452 3455 3 462	2745 2752 2766	3364 3416 3598	151.3 159.0 184.2	14874 14871 14895	14888 14887 14886	-101 -110 -138	92101.2 102805.7 144096.1	D757 0 18 35	1313 1246 1207	3471 3470 3471	2616 2629 2637	2616 2637 2653	0.0 3.2 6.2	15009 14990 14980	15009 15000 14992	0 -0 -0	0.0 29.3 106.3

D	Т	S	σt	σstp	(IA:C	С	Cm	K	ΣΑΧ	D	Т	S	σt	σstp	ΣΔD	С	Cm	к	ΣΔΧ
D757 c	ontinued									()762									
53 71 86 167 259 338 417 573 666 738 837 914 1004 1096	1170 1075 1093 969 961 910 845 758 706 671 612 570 513 468	3472 3473 3470 3461 3468 3465 3457 3451 3448 3448 3448 3448 3448 3448	2645 2663 2657 2672 2679 2685 2689 2697 2702 2707 2715 2720 2727 2733	2669 2695 2696 2748 2796 2838 2878 2957 3005 3042 3096 3136 3136 3135 3233	9.1 11.8 14.0 25.6 38.0 48.3 58.4 77.6 88.6 96.9 107.8 115.8 124.8 133.4	14969 14939 14948 14915 14927 14927 14922 14909 14901 14895 14895 14895 14885 14881 14872 14870	14986 14978 14972 14952 14937 14933 14925 14922 14919 14915 14913 14909	-0 -1 -2 -5 -10 -14 -19 -28 -35 -40 -47 -53 -61 -69	236.2 405.7 578.0 2043.6 4683.7 7759.0 11547.7 21051.3 27884.6 33698.9 42274.7 49325.0 57898.7 66951.7	0 23 45 68 91 136 173 266 355 D763 0 6	1315 1091 1020 986 974 960 946 905 875 1285 1285 1207 1177	3396 3455 3461 3460 3460 3459 3456 3452 3320 3425 3435	2558 2646 2663 2668 2670 2673 2674 2679 2680 2505 2601 2615	2558 2656 2684 2699 2712 2734 2753 2799 2841 2505 2604 2620	0.0 4.6 7.9 11.1 14.3 20.4 25.4 37.9 49.7 0.0 1.5 2.6	15001 14934 14914 14905 14904 14906 14907 14906 14909 14981 14969 14960	15001 14967 14946 14934 14926 14919 14917 14913 14912 14981 14981 14975 14970	0 -1 -2 -3 -4 -7 -10 -15 -21	0.0 52.9 165.4 347.8 599.3 1294.7 2067.5 4797.4 8465.0 0.0 4.4
1193 1283	415 376	3451 3452	2740 2745	3286 3332	141.9 149.3	14864 14863	14903 14900	-77 -85	76693.4 85851.8	D764	11//	0100	2010	2020	2.0	11500	11070	0	1110
D758 0 19 53 71 106	1235 1208 1089 972 936	3449 3450 3456 3457 3459	2615 2620 2647 2668 2676	2615 2629 2671 2701 2724	0.0 3.5 9.3 12.0 16.7	14980 14974 14938 14899 14893	14980 14977 14964 14952 14934	0 -0 -1 -2 -5	0.0 33.4 241.9 407.2 825.4	0 23 46 92 138 D765	1140 1041 944 933 917	3449 3447 3449 3456 3457	2632 2649 2667 2674 2677	2632 2659 2688 2716 2740	0.0 3.8 7.1 13.4 19.5	14947 14915 14885 14888 14890	14947 14931 14916 14901 14897	0 -1 -3 -6 -9	0.0 43.2 160.2 592.6 1291.5
142 194 252 336 420 573 666 756 840 D759	917 898 890 887 857 823 767 738 633	3458 3456 3456 3457 3454 3449 3444 3448 3448	2678 2680 2681 2682 2685 2686 2690 2698 2712	2743 2768 2795 2835 2875 2945 2992 3040 3094	21.4 28.2 35.7 46.7 57.6 89.7 101.1 110.9	14892 14892 14899 14911 14914 14926 14918 14922 14895	14923 14915 14910 14909 14910 14912 14914 14914 14914	-7 -11 -15 -20 -25 -33 -38 -43 -48	1410.5 2547.5 4228.4 7445.3 11581.2 21520.6 29029.1 37103.4 44921.0	0 22 44 66 88 132 159 251 331 421	1257 1232 1187 1175 1064 967 954 938 879 829	3467 3467 3461 3464 3463 3459 3459 3459 3464 3459 3457	2624 2629 2633 2638 2657 2671 2673 2679 2685 2691	2624 2639 2653 2667 2697 2731 2745 2793 2835 2882	0.0 3.9 7.7 11.4 14.9 21.2 24.9 37.2 47.6 58.9	14990 14985 14973 14973 14937 14909 14907 14918 14908 14903	14990 14987 14983 14980 14973 14956 14948 14935 14930 14925	0 -0 -1 -2 -4 -5 -11 -15 -21	0.0 42.7 168.3 373.3 641.8 1335.6 1872.1 4393.7 7412.0 11661.0
0 20 39 59	1380 1240 1078 1058	3388 3435 3454 3458	2538 2603 2648 2654	2538 2612 2665 2681	0.0 4.6 8.0 11.1	15021 14983 14932 14929	15021 15002 14981 14964	0 0 -1 -1	0.0 46.0 146.0 297.2	470 D766 0	779 1314	3454 3474	2696 2618 2625	2910 2618 2672	0-0	14892 15010	14922	-24 0	0.0
118 154 247 419	1044 1012 1002 918 861	3459 3460 3460 3457 3452	2658 2664 2666 2677 2682	2693 2717 2735 2789 2872	14.1 19.8 24.9 37.8 60.6	14927 14922 14925 14908 14915	14955 14945 14940 14931 14923	-2 -4 -6 -11 -22	1065.9 1766.9 4342.7 11947.3	33 50 67 100 134	1283 1271 1259 1244 1241 1252	3473 3481 3493 3497 3501 3505	2623 2632 2644 2650 2654 2655	2632 2647 2666 2680 2699 2715	5.9 8.7 11.4 16.5 21 7	15004 15001 15002 15001 15005	15007 15005 15004 15003 15003	0 0 0 0	20.2 96.3 213.8 371.5 797.5 1407 3
D760 0 22 43	1266 1118	3442 3450	2603 2637 2654	2603 2647 2673	0.0 4.0 7.4	14990 14943	14990 14966	0-0	0.0	187 254 D767	1175 1100	3494 3485	2661 2668	2745 2782	29.7 39.5	14996 14979	15005 15000	1 0	2691.0 4847.3
65 86 130 173	970 1141 966 927	3455 3453 3455 3455 3458	2667 2635 2668 2677	2673 2697 2674 2727 2755	10.6 13.8 20.6 26.5	14913 14898 14963 14906 14900	14948 14933 14933 14933 14926	- 1 - 3 - 4 - 6 - 9	325.6 570.8 1307.7 2195.8	0 18 35 53 71	1285 1278 1238 1236 1223	3477 3477 3473 3481 3481	2626 2628 2633 2639 2642	2626 2536 2648 2663 2674	0.0 3.2 6.1 9.2	15001 15002 14991 14993 14991	15001 15001 14999 14996 14995	0 - 0 - 0 - 0	0.0 28.5 106.8 240.4 424.4
D761 0 23 45 68 91	1331 1145 1090 957 932	3365 3451 3453 3457 3458	2531 2633 2645 2671 2676	2531 2644 2665 2702 2717	0.0 5.0 8.7 12.1 15.2	15002 14953 14938 14894 14888	15002 14977 14962 14946 14932	0 -0 -1 -2 -4	0.0 58.0 181.7 374.0 618.5	106 142 244 334	1148 1141 1013 963	3471 3483 3471 3468	2648 2659 2672 2678	2696 2723 2783 2829	17.8 23.3 38.0 50.3	14970 14976 14945 14940	14990 14986 14975 14966	-1 -1 -4 -7	923.8 1611.0 4444.7 7996.6

D	Т	S	σt	₫stp	ΣΔD	С	Cm	К	ΣΔΧ	D	Т	S	σt	σ_{stp}	ΣΔD	С	Cm	к	ΣΔΧ
D768										D774 co	ontinued								
0	11-31	3447	2633	2633	0.0	14944	14944	0	0.0	153	870	3447	2677	2747	22.7	14874	14905	-10	1651.1
17	1085	3445	2639	2647	2.8	14931	14937	-1	24.2	238	839	3448	2683	2791	33.7	14876	14894	-17	3805.6
34 51	1032 957	3445	2649	2683	8.1	14915	14930	-3	202.8	409	769	3447	2877	2830	55.3	14877	14888	-31	10771.8
68	942	3443	2662	2693	10.6	14886	14912	- 4	349.2	D.775									
102 137	870 886	344 I 3448	2672	2719	20.0	14864	14900	-10	1311.9	0775	1115	7440	2672	2672	0.0	14070	14079	0	0.0
193	892	3456	2681	2768	27.4	14890	14890	-14	2521.6	20	1108	3442	2632	2632	3.4	14938	14938	-1	34.2
255 315	894 889	3458 3457	2682	2798	35.4	14901	14891	-18	6533.8	41	1087	3441	2636	2654	7.0	14934	14937	-2	142.9
370	832	3450	2685	2853	50.3	14896	14895	-26	8967.9	82	944	3440	2647	2702	13.4	14912	14932	-4	534.8
D769										122	875	3447	2676	2732	18.9	14870	14910	-7	1093.4
0	1198	3456	2627	2627	0.0	14968	14968	0	0.0	267	872	3449	2678	2806	25.4	14879	14899	-12	4740.0
20	1016	3454	2659	2668	3.2	14907	14938	-1	32.2	354	789	3446	2689	2850	48.6	14875	14887	-27	8127.6
40 60	980 967	3460 3464	2669	2688	8.7	14898	14920	- 2	251.5	D776									
80	971	3464	2674	2710	11.4	14901	14909	-5	437.1	0	1119	3443	2632	2632	0.0	14939	14939	0	0.0
D770										25	1105	3443	2634	2646	4.3	14939	14939	-1	53.3
0	1214	3444	2615	2615	0.0	14972	14972	0	0.0	75	898	3443	2643	2704	12.1	14925	14938	-2	441.8
9	1196	3436	2612	2616	1.7	14967	14970	-0	7.7	100	870	3445	2676	2721	15.5	14865	14909	-6	735.2
19	1115	3447	2636	2644	3.5	14941	14961	-0	32.8	195	864	3452	2680	2769	27.8	14879	14892	-14	2552.1
D771										291	819	3448	2686	2818	40.1	14878	14887	-22	5527.7
0	1280	3427	2589	2589	0.0	14993	14993	0	0.0	303	709	3444	2090	2005	51.0	14072	14004	-30	5400.0
29	12//	3429	2613	2626	5.9	14994	14993	-0	84.8	D777									
48	1108	3459	2646	2668	9.2	14945	14982	-1	212.5	0	1277	3467	2620	2620	0.0	14997	14997	0	00.0
67	1023	3466	2667	2697	12.1	14919	14908	-1	5/5.7	46	1194	3469	2638	2659	7.9	14977	14983	- 1	180.2
D772										69 92	1084	3470	2659	2690	11.5	14941	14975	-1	387.8
0	1203	3454	2625	2625	0.0	14970	14970	0	0.0	138	971	3466	2676	2738	21.1	14911	14948	-5	1371.3
14 27	1027	3454 3451	2629	2635	4.6	14904	14967	-1	60.7	184	951	3465	2678	2762	27.2	14912	14939	-8	2350.2
41	926	3450	2670	2689	6.6	14877	14933	-2	128.8	361	834	3457	2685	2812	49.7	14911	14929	-13	5231.4 8478.9
82	913	3453	2678	2715	12.0	14889	14918	-5	459.9	450	776	3452	2695	2900	60.5	14887	14917	-25	12857.8
110	931	3465	2681	2731	15.6	14892	14902	-7	804.0	631	702	3452	2702	2947	81.4	14885	14912	-32 -39	24162.1
D773										724	643	3450	2712	3042	91.7	14880	14905	-46	31094.0
0	1126	3440	2628	2628	0.0	14941	14941	0	0.0	904	569	3450	2722	3134	1101.5	14880	14902	-55	46402.9
24	1097	3441	2634	2645	4.1	14934	14938	-1	49.6	979	530 484	3449	2726	3172	117.9	14876	14898	-66	53391.0
73 97	875	3444 3446	2670	2703	14.9	14871 14867	14914	-6	687.9	1168	428	3450	2738	3272	135.4	14865	14896	-83	72074.2
146	905	3456	2679	2745	21.3	14887	14894	-10	1467.4	1271	386	3452	2744	3325	144.0	14865	14892	-92	82594.2
291	834	3455	2685	2817	39.9	14884	14892	-21	5536.0	D783									
382	797	3447	2688	2862	51.4	14883	14888	-29	9392.5	0	1338	3489	2625	2625	0.0	15020	15020	0	0.0
4/1	/43	3442	2092	2907	02.4	140/0	14000	-50	14100.1	18 35	1246	3475 3476	2633 2637	2641	3.1	14990	15005	0	28.3
D774										53	1217	3478	2640	2664	9.0	14986	14994	-0	236.2
0	1146	3446	2629	2629	0.0	14949	14949	0	0.0	71 106	1324 1304	3468 3515	2612 2652	2643 2699	12.2	15024	14997 15007	-0	435.5
29	1121	3444	2632	2645	5.0	14945	14948	-1	73.0	142	1318	3520	2653	2717	23.9	15041	15014	1	1666.5
44	1057	3445	2644	2664	7.5	14925	14944	-2	163.9	302 437	1126 939	3495 3464	2671 2679	2807 2877	47.7	14998 14949	15017	3	6941.6 13871.8
20	915	5450	2002	2009	5.1	14030	14330	-	212.3						00.4	1,040	10000	1	100/1.0

CC I S

D	Т	S	σ _t	^d stp	ΣΔD	С	Cm	K	ΣΔΧ	D	Т	S	σt	σ_{stp}	ΣΔD	С	Cm	К	ΣΔΧ
D783 co	ontinued									D809 co	ontinued								
557 569 619 669 699 739 968	827 798 760 741 722 702 531	3461 3458 3455 3453 3452 3451 3447	2695 2697 2700 2701 2703 2705 2724	2947 2955 2981 3005 3020 3041 3165	82.0 83.4 89.1 95.3 98.9 103.5 128.1	14926 14916 14909 14909 14906 14905 14875	14989 14988 14981 14976 14973 14969 14950	-4 -5 -8 -11 -13 -15 -32	21596.6 22421.2 25980.8 29795.7 32208.7 35550.1 56493.8	137 175 261 347 644 890	1182 1123 1017 939 772 614	3487 3481 3470 3463 3450 3446	2654 2660 2671 2679 2694 2713	2716 2739 2789 2835 2986 3118	26.3 32.0 44.5 56.3 94.8 123.6	14989 14974 14949 14933 14917 14895	15034 15023 15003 14987 14958 14944	3 0 -3 -18 -33	1679.5 2574.9 5282.2 8877.3 27961.9 50064.6
D784										0810	1504	7457	25(1	25(1	0.0				
0 24 49 73 98 146	1396 1362 1346 1331 1214 1091	3480 3482 3483 3484 3477 3471	2606 2615 2619 2622 2640 2659	2606 2625 2641 2655 2684 2724	0.0 4.6 9.3 13.7 18.0 25.6	15038 15030 15030 15028 14993 14957	15038 15034 15032 15031 15026 15009	0 1 1 2 2 1	0.0 55.3 225.8 494.8 866.8 1790.3	25 50 75 100 D811	1470 1411 1304 1260	3452 3453 3454 3459 3462	2561 2569 2583 2609 2620	2561 2581 2605 2642 2665	5.9 11.5 16.7 21.5	15069 15063 15048 15018 15006	15069 15066 15061 15051 15042	0 1 2 3 3	0.0 73.4 284.7 608.8 1025.5
185 374 468 765 864 969	1003 874 843 728 635 548	3463 3454 3456 3451 3449 3447	2668 2682 2688 2701 2713 2722	2751 2852 2900 3048 3105 3163	31.3 57.1 69.3 106.0 117.3 128.4	14930 14912 14917 14920 14899 14882	14995 14958 14949 14937 14934 14929	-1 -11 -16 -32 -38 -46	2729.2 9940.5 15063.7 37696.1 46956.6 57106.1	0 21 42 64 85 127	1592 1567 1519 1418 1358 1221	3478 3477 3486 3503 3504 3482	2562 2566 2584 2619 2632 2643	2562 2576 2603 2648 2670 2700	0.0 5.0 9.7 14.1 17.9 25.0	15100 15095 15085 15059 15043 15000	15100 15098 15094 15086 15077 15059	0 1 3 4 4 5	0.0 52.1 201.6 436.7 717.2 1468.3
D785 0 22 44 66	1379 1359 1332 1335	3478 3478 3479 3480	2608 2612 2618 2619	2608 2622 2638 2648	0.0 4.2 8.4 12.4	15032 15029 15025 15029	15032 15030 15029 15028	0 0 1 1	0.0 46.5 183.0 407.5	157 312 389 631 D812	1162 947 896 783	3486 3464 3458 3451	2657 2678 2682 2694	2728 2819 2858 2979	29.7 51.9 62.1 93.3	14985 14931 14924 14919	15046 15002 14987 14962	5 0 -3 -16	2140.3 7332.5 10933.2 26840.3
87 151 174 D786	1306 1128 804	3481 3472 3463	2625 2653 2700	2664 2712 2779	16.3 23.7 29.4	15023 14967 14855	15027 15016 14990	2 1 -1	701.3 1504.3 2373.3	0 25 49 74 98	1662 1536 1369 1341 1288	3488 3483 3479 3477 3476	2553 2578 2611 2615 2625	2553 2589 2633 2648 2669	0.0 5.9 10.9 15.6 20 1	15123 15088 15037 15032 15018	15123 15105 15084 15067	0 2 3 3	0.0 73.4 258.0 551.7
0 25 49 73 98 147 196 288 375 462 549	1319 1199 1179 1184 1132 1077 1051 1004 942 851 813	3473 3455 3462 3466 3462 3468 3473 3477 3472 3459 3458	2616 2626- 2635 2637 2644 2659 2667 2679 2685 2689 2685 2689 2695	2616 2637 2657 2670 2688 2725 2756 2809 2855 2899 2943	0.0 4.5 8.7 12.8 16.9 24.5 31.7 44.3 55.8 66.9 77.7	15012 14973 14971 14976 14962 14951 14951 14949 14940 14918 14918	15012 14993 14982 14979 14977 14970 14965 14965 14957 14951 14951	0 -0 -1 -2 -3 -5 -8 -11 -15 -20	0.0 56.8 210.7 457.5 810.2 1745.0 2970.6 6042.9 9831.6 14479.4 19958.0	D813 0 39 59 79 99 331 418 634	1868 1858 1709 1633 1505 1056 974 755	3540 3541 3535 3537 3528 3488 3478 3457	2543 2546 2578 2597 2619 2678 2684 2702	2543 2563 2604 2632 2664 2827 2873 2900	0.0 10.0 14.7 19.0 23.0 60.3 71.8 98.6	15189 15193 15152 15132 15095 14977 14960 14910	15189 15191 15185 15174 15162 15073 15051 15012	0 5 7 9 11 16 14 5	0.0 194.1 428.6 726.0 1075.4 9091.7 13430.7 27498.5
D808										D814									
0 25 50 75 100 150 200 300 400	1461 1355 1358 1338 1253 1166 1125 989 874	3462 3467 3481 3480 3471 3468 3475 3466 3459	2578 2604 2615 2618 2628 2642 2655 2672 2686	2578 2616 2637 2652 2673 2710 2745 2808 2867	0.0 5.3 10.1 14.8 19.3 27.9 35.9 50.6 64.0	15057 15028 15034 15032 15005 14983 14977 14945 14917	15057 15042 15036 15035 15031 15019 15009 14993 14977	0 1 2 2 2 1 -1 -6	0.0 65.7 247.1 540.6 938.9 2009.9 3405.3 7073.1 11763.2	0 24 47 71 95 189 284 D815	1808 1801 1637 1506 1420 1296 1188	3515 3515 3527 3527 3522 3514 3504	2539 2540 2589 2618 2633 2653 2653 2666	2539 2551 2610 2650 2676 2737 2794	0.0 6.2 11.7 16.5 20.8 36.1 50.6	15169 15170 15128 15090 15067 15039 15017	15169 15170 15159 15142 15126 15090 15069	0 3 5 7 8 11 13	0.0 74.7 267.8 550.9 908.3 3074.7 6502.8
0 0 46 69	1585 1447 12 9 6	3482 3472 3473	2566 2589 2621	2566 2609 2652	0.0 10.3 14.8	15098 15061 15015	15098 15080 15066	0 2 3	0.0 236.5 498.9	0 29 43 115 381 575	1906 1914 1910 1592 1051 791	3550 3550 3552 3531 3486 3461	2541 2539 2541 2602 2677 2700	2541 2551 2560 2653 2849 2961	0.0 7.5 11.2 27.8 73.1 97.8	15201 15208 15209 15126 14983 14915	15201 15205 15206 15182 15092 15044	0 4 14 23 17	0.0 109.1 240.2 1554.2 12777.3 24607.5

D	Т	S	σt	°stp	ΣΔD	С	Cm	K	ΣΔΧ	D	Т	S	σ _t	σ_{stp}	ΣΔD	С	Cm	к	$\Sigma \Delta X$
D816										D822 c	ontinued	1							
0	1898	3552	2544	2544	0.0	15199	15199	0	0.0	50	1773	3535	2562	2585	12.4	15169	15172	6	307.3
57	1893	3553	2546	2571	14.5	15207	15203	8	413.6	75	1469	3533	2631	2665	17.6	15081	15156	8	630.0
77	1886	3552	2547	2581	19.6	15208	15204	10	754.6	100	1396	3526	2641	2686	21.8	15060	15135	9	1000.9
115	1460	3529	2630	2681	27.8	15084	15185	14	1540.2	150	1310	3518	2653	2720	29.8	15038	15106	11	2002.0
D817										300	1162	3501	2669	2803	52.2	15033	15066	12	7037.4
0	1000	7557	2551	2551	0.0	15107	15107	0	0.0	391	1065	3488	2676	2852	65.1	14990	15051	13	11476.4
26	1889	3557	2551	2551	6.5	15202	15197	3	84.2	482	947	3471	2683	2901	77.5	14959	15036	12	16871.3
										620	814	3456	2693	2973	95.4	14930	15016	-2	26/30.4
D818										968	604	3446	2714	31,54	136.4	14904	14979	-14	59200.3
0	1958	3562	2536	2536	0.0	15217	15217	0	0.0	1214	453	3446	2732	3286	161.4	14883	14961	-31	86460:1
19	1954	3563	2538	2546	5.0	15219	15218	3	47.2	1445	372	3451	2745	3404	181.8	14887	14949	-49	113537.5
38	1957	3563	2537	2554	20.2	15223	15220	6	780 7	1944	251	3461	2/64	3020	219.2	14920	14937	-01	177000.0
115	1712	3556	2593	2644	29.3	15165	15215	16	1650.5	D823									
296	1434	3533	2639	2770	64.1	15105	15166	33	8811.8	0	1810	3524	2545	2545	0.0	15171	15171	0	0.0
429	1069	3489	2676	2869	84.9	14998	15130	37	16352.6	25	1802	3526	2548	2559	6.3	15173	15172	3	79.0
577	927	34/5	2690	2950	104.8	14968	15092	35	20347.9	50	1754	3524	2559	2581	12.5	15162	15170	6	310.5
007	151	3401	2000	5010	110.0	1 1000	10000	52	0000110	74	1451	3523	2627	2660	17.5	15074	15153	8	623.1
D819										149	1289	3519	2655	2035	21.8	15031	15100	10	1983.0
0	2233	3562	2462	2462	0.0	15290	15290	0	0.0	297	1143	3499	2671	2804	51.6	15003	15058	12	6855.2
26	2219	3565	2468	2479	8.6	15291	15291	5	111.8	495	901	3466	2687	2911	78.5	14944	15024	8	17499.6
53	1960	3559	2534	2557	16.6	15225	15274	10	429.1	642 791	802	3455	2694	2984	97.3	14930	14080	-6	28162.4
391	1269	3512	2657	2831	82.8	15064	15151	39	14405.3	987	566	3443	2717	3166	137.4	14891	14972	-19	60706.3
525	1015	3468	2670	2905	103.4	14991	15119	42	23808.9	1237	435	3447	2735	3299	162.1	14879	14954	- 38	88185.3
789	755	3458	2703	3060	138.6	14936	15067	35	46982.8	1474	347	3452	2748	3421	182.3	14881	14942	-57	115500.1
1165	515	3451	2729	3259	1/9.3	14901	15019	14	80/35.4	2457	255	3461	2764	3683	219.2	14927	14932	-102	251536.5
D820										2107		0100		0000			11000		
0	2020	3561	2519	2519	0.0	15234	15234	0	0.0	D824									
15	2018	3561	2520	2526	4.2	15236	15235	2	31.3	0	1976	3560	2530	2530	0.0	15222	15222	0	0.0
45	2023	3562	2519	2539	12.6	15243	15238	7	282.6	24	1973	3560	2531	2541	6.4	15224	15223	4	77.2
60	1794	3562	2519	2545	24 5	15245	15240	10	1083.5	40	1908	3550	2551	2583	12.7	15200	15215	10	668.8
299	1241	3501	2654	2787	65.6	15038	15147	29	9083.2	97	1725	3544	2581	2624	24.7	15164	15207	13	1.168.4
442	1064	3486	2675	2874	87.0	14997	15105	31	17022.4	145	1517	3537	2624	2688	34.5	15108	15183	18	2347.9
557	905	3473	2692	2943	102.4	14956	15078	29	24708.3	192	1443	3532	2636	2722	42.8	15092	15163	21	3/58.7
789	720	3469	2090	3064	130.7	14933	15039	20	43726.6	387	1134	3498	2672	2845	73.0	15014	15105	27	12414.3
										475	1015	3483	2681	2895	85.4	14985	15085	27	17756.3
D821										650	822	3460	2695	2989	108.3	14938	15051	22	30585.5
0	1886	3554	2549	2549	0.0	15196	15196	0	0.0	939	606	3455	2702	3140	142.2	14921	15035	6	57454.0
36	1898	3553	2545	2561	9.1	15206	15201	5	163.7	1181	483	3447	2730	3267	167.1	14890	14986	-11	83912.7
54	1837	3553	2500	2564	17.5	15191	15189	9	610.5	1391	392	3450	2742	3376	186.2	14887	14971	-26	108421.0
108	1503	3536	2626	2674	24.2	15097	15161	12	1214.1	1874	263	3461	2763	3617	223.2	14914	14953	- 59	233449 8
153	1302	3519	2655	2724	31.7	15037	15133	14	2192.2	2340	207	5400	2115	5050	200.0	14 50 5	14551	- / /	20011010
283	1164	3502	2669	2796	50.9	15009	15082	16	6389.1	D825									
504	931	3473	2688	2915	80.6	14956	15035	12	18049.1	0	1866	3530	2536	2576	0 0	15197	15197	0	0.0
588	842	3464	2695	2961	91.3	14936	15023	9	23860.3	66	1513	3523	2614	2643	15.0	15092	15140	6	493.6
1415	377	3452	2745	3391	176.5	14884	14957	-41	109218.2	88	1382	3521	2641	2680	18.9	15053	15123	7	795.1
1837	275	34,62	2763	3600	208.2	14912	14943	-69	100/0/.8	132	1323	3519	2651	2710	26.0	15041	15097	9	1574.7
0822										264	1283	351/	2658	2787	32.0	15034	15083	10	2591.5 5474 Q
0022	1007	7527	2547	2517	0.0	15176	15176	0	0 0	345	1128	3499	2674	2828	57.2	15005	15051	12	8978.1
0 25	1827	3528	2545	2543	6.3	15170	15174	3	78.8										
	0																		

D	Т	S	σt	σ_{stp}	ΣΔD	С	Cm	K	ΣΔΧ	D	Т	S	σt	σ_{stp}	ΣΔD	С	Cm	K	ΣΔΧ
D825 continued							D829												
691	758	3451	2697	3010	102.8	14920	15007	3	32565.9	0	1991	3562	2528	2528	0.0	15226	15226	0	0.0
862	646	3444	2707	3099	123.1	14903	14988	-7	48362.7	25	1974	3562	2532	2545	13 0	15210	15220	7	317 2
1090	512	3444	2724	3220	147.7	14886	14968	-23	72374.1	74	1930	3558	2541	2573	19.5	15222	15224	11	716.2
1319	399	3447	2739	3341	169.2	14878	14953	-41	98314.1	98	1769	3557	2580	2624	25.3	15179	15217	14	1215.8
1/51	2//	345/	2758	3558	203.4	14900	14937	- / 3	212566 1	148	1657	3553	2604	2670	36.0	15153	15200	20	2525.6
2203	208	3405	2707	3961	264 1	14938	14955	-98	283702 0	200	1564	3546	2620	2709	46.1	15131	15185	25	4294.5
2055	200	5400	2111	5501	204.1	13015	14544	50	20070210	300	1400	3528	2642	2776	64.1	15095	15161	32	8779.5
D826										396	1275	3515	2658	2834	79.8	15066	15141	37	14254.7
0	1071	7541	2527	2527	0 0	15207	15207	0	0 0	495	1133	3497	2671	2893	94.9	15032	15123	41	20965.3
24	1931	3541	2537	2548	6.4	15100	15207	3	76.7	922	73/	2409	2091	2995	137 0	14909	15090	41	10101 1
48	1838	3537	2548	2569	12.6	15188	15198	6	299.0	1031	577	3437	2703	3188	161.1	14903	15035	24	70629.3
72	1538	3531	2614	2646	17.9	15101	15180	9	617.8	1332	453	3451	2736	3342	190.7	14903	15005	4	105576.4
97	1462	3531	2631	2674	22.4	15082	15157	10	1003.1	1483	396	3453	2744	3419	204.1	14904	14994	-5	124371.7
145	1350	3522	2648	2713	30.5	15052	15127	12	1975.5	1945	263	3461	2763	3648	239.6	14927	14976	-32	185340.5
192	1247	3508	2658	2744	37.8	15024	15105	13	3210.1	2241	225	3464	2768	3786	259.6	14960	14971	-43	227121.9
288	1158	3501	2670	2799	51.9	15006	15075	14	6603.5										
382	1051	3486	26//	2849	65.1	14983	15055	14	27010 8	D830									
766	681	3434	2095	2978	113 0	14922	14006	-2	38840 8	0	2019	3566	2523	2523	0.0	15234	15234	0	0.0
956	562	3440	2715	3150	135.3	14885	14975	-16	57231.5	25	2018	3563	2521	2532	6.9	15238	15236	4	86.2
1199	428	3442	2732	3279	159.7	14869	14955	-36	83556.1	50	1988	3561	2528	2550	13.8	15233	15236	8	343.7
1457	345	3450	2747	3412	182.0	14879	14941	-58	113246.4	75	1938	3558	2538	2571	20.4	15224	15233	12	761.4
1924	261	3460	2762	3639	216.9	14921	14931	-89	172203.3	100	1/92	3550	25/4	2618	20.0	15185	15226	15	1500.0
2413	226	3464	2768	3861	250.7	14989	14936	-104	245367.9	200	1464	3530	2612	2079	46 6	15098	15182	20	4261.6
2899	193	3470	2776	4080	283.9	15058	14950	-96	333641.1	300	1304	3516	2653	2787	63.5	15061	15148	30	8496.2
0027										400	1128	3497	2672	2851	78.6	15015	15120	32	13799.9
0027										500	994	3482	2684	2909	92.5	14981	15095	32	20024.1
0	1877	3542	2542	2542	0.0	15192	15192	0	0.0	631	856	3466	2694	2979	109.4	14948	15068	29	29613.4
22	1874	3542	2543	2552	5.7	15194	15193	3	62.1	783	720	3457	2707	3062	127.7	14921	15042	22	42515.5
43	1864	3540	2544	2503	20.6	15194	15194	0	257.5	875	591	3451	2720	3163	148.7	14901	15016	10	60976.1
130	1330	3516	2647	2706	28.0	15041	15128	11	1655.7	1228	4/1	3451	2734	3122	105 3	14895	14991	- 25	117782 0
172	1247	3511	2660	2737	34.5	15021	15104	12	2635.8	1948	234	3464	2768	3656	229.0	14915	14958	-55	175505.4
257	1161	3503	2671	2786	46.8	15003	15074	13	5280.3	1010		0.01							
323	1089	3490	2674	2819	56.0	14987	15058	12	7966.0	D831									
407	983	3478	2683	2866	67.5	14962	15040	11	12131.0	0	20.4.1	75(2)	2514	2514	0.0	15240	15240	0	0.0
528	876	3466	2691	2930	83.1	14940	15020	7	19445.0	21	2041	3562	2514	2514	5.0	15240	15240	3	62.4
649	764	3457	2701	2995	97.9	14915	14084	1	28159.0	43	1957	3548	2515	2545	12.1	15221	15236	7	258.1
1021	533	3440	2708	3187	139 3	14903	14965	-24	62582.0	64	1915	3548	2537	2565	17.7	15215	15230	10	560.0
1230	441	3447	2734	3295	159.5	14881	14951	-40	85275.1	86	1628	3545	2605	2643	22.8	15134	15216	12	942.5
1620	314	34 57	2755	3495	191.6	14893	14935	-70	131104.0	158	1456	3534	2635	2705	36.2	15090	15168	18	2580.5
2069	233	3464	2768	3710	222.6	14934	14931	-96	188242.0	237	1333	3521	2651	2757	49.4	15061	15137	22	5179.6
										304	1254	3512	2660	2796	59.9	15044	15118	24	8017.6
D828										390	1124	3497	2673	2848	/2.6	15012	15098	26	12426.0
	1001	75(2)	25.20	25.20	0.0	15226	15226	0	0.0	640	989	3466	2005	2915	105 7	14981	15074	23	20/18 0
21	1991	3562	2520	2542	5.6	15220	15220	3	59.2	818	690	3453	2708	3079	126.8	14915	15024	13	44778.4
41	1974	3563	2533	2551	11.0	15228	15226	6	224.5	974	570	3449	2721	3164	143.7	14891	15005	3	59916.0
62	1957	3561	2536	2563	16.6	15226	15226	9	511.9										
83	1955	3561	2536	2573	22.1	15230	15227	13	915.2	D832									
124	1683	3549	2595	2650	31.9	15157	15216	18	1923.8	0	2002	3545	2512	2512	0.0	15227	15227	0	0.0
146	1625	3543	2604	2669	36.4	15142	15206	20	2537.0	23	1948	3552	2531	2541	6.4	15216	15222	3	73.1
216	1462	3533	2633	2729	49.7	15101	15178	26	4940.1	46	1947	3553	2532	2553	12.5	15221	15220	7	285.5
279	1371	3525	2646	2//0	60.5	15082	15159	29	/012.2	69	1906	3548	2539	2569	18.6	15212	15219	10	635.5
1094	349	3440	2721	3017	210.0	14903	14005	25	135206 4	91	1747	3537	2570	2611	24.0	15168	15212	13	1070.7
1789	276	3461	2762	3578	229.4	14906	14981	-23	166923.8	138	1551	3538	2617	2678	34.0	15117	15188	17	2207.4
2.00		0.01		00.0						108	1463	3533	2033	2/0/	39.4	12093	151/3	19	3045.9

RY NG ND
D	Т	S	σt	σstp	ΣΔD	С	Cm	к	ΣΔΧ	D	Т	S	σ_{t}	$\sigma_{\texttt{stp}}$	ΣΔD	С	Cm	К	ΣΔΧ
D832 cc	ntinued									D837 c	ontinued	i							
242	1321	3519	2652	2760	51.8	15058	15143	23	5586.1	203	1319	3520	2653	2744	43.8	15051	15139	19	3950.6
316	1190	3504	2666	2807	63.2	15023	15119	25	8750.7	375	1036	3486	2680	2849	68.9	14976	15081	20	11197.0
390	1100	3494	2675	2850	73.8	15003	15099	26	12505.6	472	936	3474	2688	2901	81.6	14954	15057	18	16607.0
499	970	3479	2686	2911	88.6	14972	15074	25	19087.0	780	678	3449	2707	3061	119.1	14903	15006	3	40053.1
612	841	3466	2696	2973	103.0	14939	15052	21	27065.6										
965	569	3449	2721	3160	142.7	14890	15002	1	58403.8	D838									
										0	1830	3532	2546	2546	0.0	15177	15177	0	0.0
D833										14	1833	3533	2546	2552	3.5	15180	15179	2	24.8
0	1935	3542	2527	2527	0.0	15028	15208	0	0.0	29	1829	3535	2549	2561	7.3	15182	15180	3	106.2
18	2052	3544	2498	2506	5.1	15244	15226	3	46.2	43	1814	3537	2554	2573	10.8	15180	15180	5	231.7
50	1777	3543	2568	2590	13.7	15171	15214	7	336.4	67	1814	3543	2558	2588	16.7	15185	15181	8	555.2
67	1655	3536	2591	2621	17.5	15137	15199	9	558.7	100	1547	3543	2622	2666	23.7	15110	15170	11	1143.9
100	1527	3538	2622	2667	24.0	15103	15173	12	1102.5	134	1498	3539	2629	2689	29.9	15100	15153	14	1863.1
132	1446	3530	2634	2693	29.7	15083	15153	13	1764.5	204	1356	3523	2647	2739	41.8	15064	15129	18	3872.7
205	1325	3520	2652	2743	41.8	15053	15123	17	3803.4	266	1276	3515	2658	2777	51.6	15046	15111	20	6177.0
253	1226	3508	2662	2775	49.3	15026	15107	18	5494.3	333	1207	3507	2665	2814	61.7	15032	15097	21	9215.3
320	1124	3497	2673	2817	58.9	15000	15087	19	8276.4	532	934	3471	2686	2925	89.7	14962	15059	21	21304.1
414	976	3480	2686	2872	/1.6	14960	15063	17	12936.9	1704	/10	3448	2702	3030	115.0	14906	15026	13	36564.5
										1504	459	3450	2/35	3328	1/5.0	14900	149/1	-25	98418.5
D834										1977	259	7450	2752	34/4	198.0	14094	14956	-44	152199.4
0	1848	3539	2547	2547	0.0	15183	15183	0	0.0	1655	230	3401	2/03	3000	210.0	14905	14050	-01	162904.1
22	1839	3540	2550	2560	5.5	15184	15184	3	60.7	0.070									
4 5	1815	3541	2557	2577	11.2	15182	15183	6	251.1	0839									
67	1641	3535	2594	2624	16.2	15133	15175	8	530.5	0	1846	3550	2556	2556	0.0	15184	15184	0	0.0
90	1471	3530	2628	2669	20.6	15083	15158	9	879.5	29	1841	3552	2559	2571	7.0	15188	15186	4	102.1
112	1427	3525	2634	2684	24.5	15071	15142	11	1267.9	52	1810	3555	2569	2592	12.5	15182	15186	6	323.3
										76	1711	3549	2588	2622	17.9	15157	15181	9	667.6
D835										100	1563	3542	2617	2662	22.7	15115	15170	11	1093.7
	1835	3543	2553	2553	0.0	15180	15180	0	0.0	124	1521	3540	2625	2680	27.7	15106	15158	13	1590.4
15	1839	3543	2552	2559	3.7	15184	15182	2	27.8	224	1313	3520	2054	2754	44.1	15052	15123	21	4529.0
29	1831	3543	2554	2567	7.2	15184	15183	4	103.8	318	1204	3307	2005	2000	30.3 71 E	14001	15098	21	13202 5
44	1820	3542	2556	2576	10.8	15184	15183	5	238.1	410 504	062	340/	2077	2001	84 4	14991	15060	20	19061 4
59	1823	3542	2555	2581	14.5	15186	15184	7	427.5	645	827	3460	2603	2986	102 7	14940	15036	16	29580 5
88	1528	3531	2617	2656	20.8	15101	15170	10	890.3	790	733	3451	2701	3058	120.6	14927	15017	9	42425.0
116	1471	3529	2628	2679	25.9	15087	15152	12	1414.5	999	601	3446	2715	3168	144.7	14908	14996	-2	64020.5
150	1384	3524	2642	2709	31.8	15063	15135	13	2192.7	1251	482	3449	2731	3300	170.6	14902	14978	-19	93163.7
193	1303	3518	2654	2741	38.7	15044	15116	15	3375.0	1510	383	3454	2746	3434	193.8	14903	14965	-35	125136.7
										1975	241	3463	2766	3666	228.2	14923	14953	-62	185078.1
D836										2464	202	3468	2774	3890	259.5	14987	14953	-77	254620.2
0	1918	3552	2539	2539	0.0	15025	15205	0	0.0	2767	156	3470	2779	4030	278.2	15019	14958	-77	303475.2
16	1921	3552	2538	2545	4.2	15209	15207	2	33.3										
31	1925	3552	2537	2551	8.1	15211	15208	4	125.5	D840									
47	1920	3552	2539	2559	12.3	15213	15210	7	288.9	0	1825	3525	2542	2542	0.0	15175	15175	0	0:0
63	1904	3548	2540	2567	16.5	15210	15210	9	518.9	24	1797	3524	2548	2559	6.1	15170	15173	3	73.2
94	1648	3541	2597	2639	23.7	15141	15199	12	1089.1	48	1794	3524	2549	2570	12.1	15174	15172	6	290.7
126	1551	3538	2617	2673	30.1	15115	15181	15	1787.4	72	1611	3521	2590	2622	17.7	15122	15164	8	625.4
175	1450	3532	2635	2713	39.0	15091	15159	19	3126.6	96	1387	3510	2631	2674	22.4	15055	15145	9	1016.5
220	1356	3523	2647	2746	46.5	15065	15142	21	4621.9	144	1256	3505	2654	2718	30.3	15018	15109	10	1964.5
302	1092	3496	2678	2814	58.7	14986	15110	22	7807.7	284	1148	3498	2669	2797	51.1	15003	15060	11	6420.8
334	1029	3486	2681	2832	63.0	14967	15097	22	9168.1	373	1045	3485	2678	2846	63.6	14979	15944	11	10512.6
452	930	3477	2691	2895	78.2	14949	15061	18	15138.8	468	935	3470	2685	2896	76.3	14953	15028	9	15872.6
										610	830	3459	2693	2969	94.6	14934	15008	3	25737.9
D837										752	730	3452	2702	3043	112.0	14919	14993	-4	37600.8
0	2125	3550	2483	2483	0.0	15261	15261	0	0.0	936	609	3447	2714	3140	133.0	14901	14976	-15	55318.1
14	1875	3551	2549	2555	3.9	15194	15227	2	27.6	1178	471	3447	2731	3268	157.6	14884	14959	-32	81343.2
28	2248	3551	2449	2461	8.1	15297	15236	4	115.3	1425	373	3452	2745	3396	179.4	14884	14949	-51	109695.2
56	1809	3547	2563	2587	16.3	15183	15238	9	459.4	1867	262	3461	2763	3614	212.4	14913	14935	-81	164049.2
84	1612	3538	2603	2640	22.5	15128	15210	12	890.7	2344	212	3466	2/71	3835	243.9	14971	14936	-99	230252.5
										2831	175	34/1	2//8	4055	2/4.9	12039	14948	-98	21022/.0

D	Т	s	σt	₫stp	σag	С	Cm	K	ΣΔΧ	D	т	S	σt	₀stp	ΣŲD	С	Cm	К	ΣΔΧ
D841										0844 c	ontlnued	1							
0	1851	3554	2558	2558	0.0	15186	15186	0	0.0	217	1157	3495	2665	2763	40.2	14994	15070	10	3896.5
25	1853	3555	2558	2569	6.1	15191	15189	3	75.7	280	1063	3485	2674	2801	49.1	14971	15050	9	6110.6
50	1814	3553	2566	2588	12.0	15183	15188	6	299.7	349	94.3	3467	2681	2839	58.4	14936	15031	7	9039.8
75	1673	3547	2596	2629	17.6	15146	15180	9	646.1	453	866	3462	2689	2895	71.8	14923	15008	2	14430.1
100	1563	3542	2617	2662	22 5	15115	15168	11	1079.6	555	803	3457	2695	2947	84.5	14916	14991	- 3	20815.1
100	1442	3542	2635	2702	31 6	15083	15145	14	2208.1	600	722	3452	2703	3020	101 7	14906	14975	-12	31611.8
150	1442	3550	2648	2736	39 6	15058	15127	17	3604.7	888	593	3449	2718	3122	122 6	14887	14958	-25	48199.0
198	1340	7514	2650	2750	54 0	15046	15102	20	7371 1	1121	171	3118	2731	3243	145 6	14876	14942	-43	71306 8
295	1205	3514	2039	2791	54.5 60 E	15000	15083	20	12421 4	1121	4/4	5440	2751	5245	145.0	14070	14542	-45	/1500.0
394	1117	3495	2672	2049	09.5	14074	15065	21	18325 8	D94E									
490	983	34/0	2081	2902	101 7	149/4	15005	17	28023 2	0045									
634	841	3462	2693	2980	101.7	14944	15041	11	41552.0	0	1849	3547	2553	2553	0.0	15185	15185	0	0.0
779	744	3454	2702	3054	119.6	14930	15022	11	41552.8	24	1849	3548	2554	2564	5.9	15188	15186	3	71.0
981	616	3448	2714	3159	142.9	14911	15001	()	62038.7	49	1792	3544	2565	2586	12.0	15176	15184	6	291.5
1234	456	3448	2733	3296	168.5	14888	14980	-17	90454.2	73	1612	3545	2608	2641	17.1	15125	15173	8	608.2
1496	350	3453	2748	3431	191.1	14888	14963	-36	121209.1	98	1555	3542	2619	2663	21.9	15112	15159	10	1016.8
1967	246	3463	2766	3662	225.2	14923	14950	-66	180210.1	147	1430	3530	2637	2703	30.7	15079	15138	14	2087.6
										200	1313	3519	2653	2743	30 3	15047	15118	16	3590 6
D842										200	1180	3504	2668	2801	54 1	15016	15000	18	7260 0
							15133	0	0.0	290	1072	7407	2008	2801	54.1	14078	15090	10	11970 1
0	1820	3549	2562	2562	0.0	15177	151//	0	0.0	393	1032	3467	2081	2050	07.3	149/0	15067	10	11039.1
19	1806	3551	2567	2575	4.5	15176	15176	2	42.6	492	953	3475	2080	2907	80.4	14963	15047	10	1/042.5
37	1801	3551	2568	2584	8.7	15178	15176	4	160.4	642	801	3458	2696	2987	99.5	14930	15024	10	28467.4
56	1796	3550	2568	2593	13.1	15179	15177	7	366.7	785	732	3455	2704	3060	116.8	14925	15006	3	40763.9
74	1694	3549	2592	2625	17.1	15152	15174	9	626.9	986	590	3449	2718	3166	139.3	14902	14987	-8	60671.1
111	1542	3542	2622	2671	24.4	15110	15160	12	1303.4	1235	430	3449	2737	3301	163.4	14877	14967	-27	87532.8
150	1488	3540	2632	2699	31.4	15099	15145	15	2217.6	1488	344	3456	2751	3431	184.2	14884	14952	-47	115884.8
224	1312	3518	2653	2753	43.8	15052	15122	18	4521.1	1958	234	3464	2768	3661	216.9	14916	14940	-78	172173.8
200	1204	3506	2665	2799	55.2	15026	15101	20	7518.9										
370	1101	3493	2674	2840	65 5	15000	15084	21	10945.6	D846									
600	879	3463	2688	2959	96 7	14952	15042	17	26081.6		1700	7544							
757	767	3405	2600	2939	116 1	14034	15022	11	30101 6	0	1798	3546	2565	2565	0.0	15170	15170	0	0.0
/53	672	3433	2099	7140	140 1	14934	15022	1	50730 0	25	1783	3546	2568	2579	5.8	15170	15170	3	73.0
959	632	3450	2714	3149	140.1	14914	14095	12	926E1 0	50	1507	3539	2605	2627	11.2	15120	15158	5	275.0
1163	528	3448	2725	3254	101.7	14906	14965	-12	120754 4	75	1385	3531	2648	2681	15.7	15053	15134	7	553.8
1547	330	3455	2752	3458	195.7	14888	14963	-36	120/54.4	100	1360	3531	2653	2698	19.6	15048	15113	8	895.8
1963	241	3463	2766	3661	224.9	14919	14950	-05	180102.7	150	1341	3530	2656	2723	27.3	15050	15092	9	1854.4
										200	1328	3529	2658	2747	34.9	15054	15082	11	3187.3
D843										300	1298	3527	2662	2796	50.0	15061	15074	15	6970.3
0	1868	3500	2550	2500	0 0	15190	15190	0	0.0	400	1252	3520	2666	2845	65.0	15060	15070	19	12221.3
24	1843	3500	2550	2500	5.0	15187	15188	3	70.6	500	1182	3506	2669	2892	80.0	15051	15067	22	18945.8
24	1042	3555	2559	2570	11 9	15107	15100	6	286 1	647	943	3470	2683	2974	101 0	14985	15056	24	31024 5
49	1608	3550	2570	2592	16.0	15102	15180	0	508 7	790	838	3459	2691	3047	120 2	14968	15041	22	44833 4
/3	1604	3544	2609	2642	10.9	15125	151/5	9	1002 6	004	650	3450	2710	3160	145 4	14030	15071	15	67282 0
98	1529	3539	2623	2666	21.6	15104	15159	10	1002.6	1245	574	7410	2710	7297	143.4	14930	15022	15	09202.0
147	1419	3530	2640	2705	30.2	15076	15136	15	2050.5	1245	3/4	7440	2720	3283	1/3.0	14937	15004	4 7	90020.3
196	1345	3522	2649	2737	38.3	15058	15119	16	5457.4	1500	408	3449	2/33	3413	200.1	14936	14993	-/	135182.2
300	1221	3509	2664	2798	54.4	15032	15093	19	7428.5	1976	2/4	3461	2/62	3660	240.3	14936	14979	-27	2051/3.4
391	1121	3496	2672	2848	67.6	15010	15076	20	12010.9	2464	220	3466	2771	3885	274.1	14995	14977	-39	280046.0
487	985	3478	2683	2902	80.9	14975	15060	19	17847.5	2961	172	3471	2778	4111	306.9	15059	14985	-30	369217.8
632	843	3462	2693	2979	99.9	14945	15037	16	28432.6										
774	718	3450	2702	3053	117.3	14917	15017	9	40702.4	D847									
972	609	3448	2715	3157	139.9	14906	14996	- 3	60433.0		1041								
1224	428	3449	2737	3296	164.7	14874	14974	-21	87690.4	0	1841	3553	2559	2559	0.0	15183	15183	0	0.0
1483	330	3457	2754	3431	185.7	14887	14957	-43	116004.7	21	1821	3552	2564	2573	5.0	15180	15182	3	52.6
1405	550	0107	2751	0101	10011	1.001	1.00.			37	1810	3551	2566	2582	8.8	15180	15181	4	162.2
D944										56	1813	3549	2563	2588	13.3	15184	15181	7	371.5
0044										74	1804	3548	2565	2597	17.6	15185	15182	9	649.8
0	1717	3506	2554	2554	0.0	15141	15141	0	0.0	111	1587	3542	2612	2661	25.6	15124	15173	13	1387.8
18	1719	3507	2554	2562	4.4	15145	15143	2	39.8	146	1507	3538	2627	2692	32.1	15105	15159	15	2229.6
36	1717	3507	2555	2571	8.8	15148	15145	3	159.3	214	1365	3525	2647	2743	43.8	15068	15136	19	4330.9
54	1652	3507	2570	2594	13.1	15131	15143	5	352.8	541	10.04	3481	2682	2925	92.8	14991	15071	26	22824.0
72	1469	3524	2624	2656	16.9	15078	15133	6	586.6	670	881	3466	2690	2992	110 0	14964	15053	24	33263 6
108	1406	3521	2635	2684	23.2	15064	15113	8	1156.2	070	501	0100	-000			2.001	20000		
144	1315	3516	2650	2715	29 1	15040	15097	9	1901.3										
144	1010	0010	2000	-/10		10040		-											

D	Т	S	σt	σstp	ΣΔD	С	Cm	К	ΣΔΧ	D	Т	s	σt	₫stp	ΣΔD	С	Cm	K	ΣΔΧ
D847 c	ontinued	1								D851									
839 1017 1320 1649 2039	750 660 488 348 258	3453 3449 3450 3454 3462	2700 2709 2731 2749 2764	3079 3169 3331 3500 3691	131.5 152.8 185.1 214.4 243.6	14941 14935 14916 14911 14940	15033 15016 14995 14979 14969	18 11 -4 -23 -43	49445.5 69256.6 107072.3 150498.7 204306.9	0 15 31 46 53	1675 1672 1679 1722 1275	3498 3498 3500 3481 3481	2558 2558 2558 2533 2631	2558 2565 2572 2554 2655	0.0 3.6 7.5 11.3 12.8	15128 15130 15134 15148 15006	15128 15129 15130 15134 15126	0 1 3 4 4	0.0 27.2 116.2 263.1 339.2
D848 0	1790	3542 3544	2564 2565	2564 2572	0.0	15167	15167	0	0.0	106 242 396 483	1125 983 873 835	3479 3469 3460 3456	2659 2676 2687 2690	2706 2785 2866 2909	21.4 40.7 60.9 71.9	14963 14934 14916 14915	15055 14995 14968 14958	4 -1 -9 -13	1017.0 4372.1 10818.6 15671.9
31 47 63 94	1812 1794 1769 1572	3543 3543 3352 3542	2559 2563 2576 2615	2573 2584 2604 2657	7.3 11.2 14.9 21.3	15178 15176 15172 15118	15171 15173 15174 15164	4 5 7 10	114.2 263.8 467.9 974.1	911 1512 1938	311 234	3447 3456 3463	2717 2755 2767	3131 3446 3651	121.6 175.1 204.0	14888 14873 14913	14932 14911 14907	-42 -89 -120	50295.6 115095.5 164939.1
126 203 250 317	1510 1345 1300 1199	3540 3522 3516 3507	2628 2649 2654 2666	2684 2740 2765 2808	27.2 40.3 47.8 58.0	15103 15060 15052 15026	15150 15124 15111 15096	13 17 19 20	1623.7 3775.9 5470.1 8360.8	0 25 49	1683 1669 1667	3488 3489 3490	2548 2552 2553	2548 2563 2575	0.0 6.2 12.2	15129 15130 15132	15129 15129 15130	0 2 4	0.0 77.9 297.8
383 736 957 1315	1092 804 681 428	3491 3459 3450 3449	2674 2697 2707 2737	2846 3029 3140 3337	67.5 114.4 141.2 178.3	14998 14945 14933 14889	15081 15029 15008 14981	21 14 5 -16	11682.5 37924.7 60615.8 102759.7	74 98 147 200 280	1430 1265 1208 1119	3486 3475 3486 3481	2603 2629 2648 2661	2636 2673 2714 2751	17.8 22.3 30.5 38.7	15062 15010 15000 14976	15119 15099 15067 15046	6 6 7 6	642.2 1031.6 2040.9 3456.0
D849 0 18	1820 1819	3547 3548	2560 2561	2560 2569	0.0	15176 15179	15176 15178	0 2	0.0	283 388 484 628 772	934 864 791 700	3464 3461 3454 3450	2675 2680 2689 2695 2705	2805 2856 2908 2979 3055	64.8 77.4 95.5	14951 14939 14927 14922 14910	15021 15001 14988 14973	4 0 -4 -11	11110.4 1,6578.5 26646.6 38787.6
35 53 106 140	1834 1816 1528 1486	3548 3549 3540 3536	2557 2563 2624 2630	2573 2586 2671 2692	8.4 12.7 23.9 30.0	15187 15183 15105 15096	15180 15182 15163 15148	4 6 12 14	147.5 338.4 1225.9 1978.1	962 1207 1458	593 435 347	3449 3449 3454	2718 2737 2750	3155 3287 3416	134.0 157.8 178.6	14898 14874 14880	14902 14951 14938 14927	-31 -50 -71	57102.9 82933.8 110735.3
210 350 456 555	1372 1170 1054 921	3525 3500 3487 3469	2646 2666 2678 2686 2604	2739 2823 2883 2936	42.0 63.8 79.0 92.4	15069 15022 14997 14962	15126 15094 15074 15057	18 22 22 21	4069.8 10175.9 16292.3 23073.7	D853 0 19	1688 1656	3486 3487	2545 2554	2545 2562	0.0	15130 15124	15130 15127	0 2	0.0
826 1055 1397 1777	744 597 414 290	3452 3452 3451 3460	2700 2718 2740 2760	3073 3196 3377 3570	126.8 126.8 153.2 186.7 216.8	14943 14936 14916 14898	15038 15020 15000 14977	17 11 -0 -21 -46	46786.0 71660.7 112694.9	37 56 74 111	1464 1393 1336	3486 3488 3496 3505	2598 2619 2638	2623 2652 2687	9.0 13.2 16.7 23.3	15103 15070 15052 15039	15120 15109 15097 15080	3 4 5 6	165.2 357.6 586.4 1193.1
1969 D850	249	3463	2766	3663	229.8	14924	14957	-57	184906.1	206 266 340 447	1159 1058 972 920	3492 3479 3471 3464	2662 2671 2679 2682	2755 2791 2833 2884	28.7 38.2 46.8 57.0 71 3	14993 14965 14946	15069 15052 15035 15018	7 6 4	1882.3 3544.2 5585.9 8666.5
0 25 50 74	1712 1678 1672 1443	3501 3493 3498 3520	2551 2553 2558 2627	2551 2564 2580 2660	0.0 6.2 12.3 17.4	15139 15133 15135 15071	15139 15136 15135 15124	0 2 4 6	0.0 77.3 306.9 620.1	576 D854	857	3458	2688	2948	88.3	14940	14987	5	22984.5
99 149 200 300 391 490	1386 1279 1205 1066 959 855	3521 3510 3501 3487 3474 3462	2640 2653 2661 2675 2684 2691	2684 2720 2750 2811 2860 2913	21.7 29.7 37.5 51.8 64.0 76.7	15056 15027 15008 14975 14949 14925	15109 15086 15069 15043 15024 15006	7 9 9 6 2	993.0 1990.7 3345.1 6924.1 11135.5 16717 3	0 23 46 69 92 138	1635 1621 1432 1357 1286 1173	3489 3488 3478 3481 3492 3485	2560 2563 2597 2615 2638 2654	2560 2573 2617 2646 2679 2716	0.0 5.5 10.6 15.1 19.3 26.7	15114 15113 15057 15036 15017 14986	15114 15114 15100 15082 15068 15046	0 2 3 4 4 4	0.0 63.1 239.2 500.6 831.7 1682.6
637 777 874 1214 1469	756 661 515 387 310	3455 3450 3446 3451 3457	2701 2710 2725 2743 2755	2990 3063 3170 3299 3428	94.5 110.6 131.2 152.6 172.0	14910 14895 14868 14856 14866	14986 14971 14953 14935 14922	-6 -15 -31 -53 -77	26806.8 38162.6 56150.9 79605.4 105581.2	182 276 361 594 721	1127 1033 948 794 735	3484 3477 3466 3454 3451	2662 2673 2679 2694 2700	2744 2798 2843 2963 3027	33.3 46.7 58.3 88.3 103.8	14978 14957 14939 14918 14916	15040 15030 15009 14995 14969 14960	4 2 -1 -12 -19	2740.9 5812.3 9500.5 23964.5 34052.0
1920 2404	232 192	3464 3469	2768 2775	3644 3866	201.9 231.5	14909 14973	14914 14919	-110 -129	156338.7 220302.3	914 1397 1855 2346	603 359 246 197	3449 3453 3463 3468	2717 2748 2766 2774	3132 3386 3613 3839	125.7 170.4 203.0 233.6	14894 14875 14903 14965	14948 14926 14917 14921	-32 -69 -103 -124	51899.9 103560.5 156662.4 220834.9

DBS5 DBS8 continued 0 1630 3489 2561 2561 0.0 15113 15113 0 0.0 384 903 3464 2685 2859 62.1 14926 14978 -6 10 24 1632 3490 2562 2572 5.7 15117 15115 2 68.7 472 805 3456 2694 2908 73.1 14902 14946 -11 15 72 1292 3490 2635 2667 15.8 15016 15087 4 543.9 998 449 3449 2735 3192 125.6 14846 14908 -61 53 96 1235 3494 2643 1491 15042 4 1757.8 B859 2557 2557 0.0 15083 15087 1 144 1155 3466 2651 2668 2605 16.0 1566 3459 2557 2557 0.0	$\Sigma \Delta X$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0418.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5136.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53335.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	270 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	526.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	858.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2985 6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.0877.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.6511.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8224.7
0 1593 3474 2558 2558 0.0 15100 0 0.0 1241 394 3451 2742 3310 149.0 14864 14910 -74 81 20 1596 3474 2558 2566 4.8 15102 1 48.4 1500 311 3457 2755 3442 169.0 14872 14903 -97 108 41 1591 3474 2559 2577 9.9 15106 15103 3 203.6 1982 225 3464 2768 3673 201.0 14916 14901 -131 164 11 1510 15100 40.0 0 40.0 0 40.0 0 40.0 0	6568.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1109.2
41 1391 $34/4$ 2339 $25/7$ 9.9 13100 13103 5 203.0 $-1-2$ $-1-2$ 1.00 5010 2010 1.010 1.01 101 101 101 101 101 101 1	4498.7
82 1269 3480 2632 2669 18.7 15008 15087 5 738.8 D860	
181 1212 3499 2658 2739 34.8 15009 15044 5 2854.2 0 1549 3439 2541 2.541 0.0 15082 15082 0 257 1055 3478 2670 2786 45.9 14962 15027 5 5286 7 to 1564 746 2574 2576 1507 15076	0.0
257 1055 3467 2678 2831 57.3 14942 15008 2 8659.8 37 1460 3450 2569 2586 9.1 150/8 150/8 150/8 1 339 962 3467 2678 2831 57.3 14942 15008 2 8659.8 37 1460 3450 2569 2586 9.1 150/61 150/5 2	45.4
423 897 3461 2684 2875 68.4 14929 14994 -2 12922.3 56 1339 3454 2598 2623 13.2 15025 15064 2	359.1
549 813 3454 2691 2940 84.6 14918 14978 -8 20792.5 74 1289 3456 2609 2642 16.8 15012 15053 3 681 744 3450 2698 3007 101.0 14913 14966 -16 30836 6 144 1007 7460 2698 2604 70.7 14007 15053 3	593.1
859 645 3446 2709 3099 121.8 14903 14954 -27 46907.7 212 1050 2461 2658 2754 41.2 14952 15012 2 4	20/0.5
1103 513 3446 2725 3228 147.8 14890 14941 -44 72394.3 284 942 3458 2674 2803 51.6 14923 14993 -1 633333 -1 633333 -1 633333 -1 -1 -1 -1 -1 -1 -1	6597.8
1356 397 3450 2741 3360 171.2 14883 14931 -63 101168.2 393 883 3455 2681 2859 66.3 14919 14973 -7 11 400 918 7451 2689 2011 70 2 14010 14051 17 17	1580.8
0857 624 751 3447 2695 2978 95.7 14906 14950 -21 26	284.5
0 1677 3477 2541 2541 0.0 15126 15126 0 0.0	
18 1665 $34/6$ 2543 2551 4.6 15125 15125 2 41.6 1600	0.0
54 1693 3474 2535 2559 13.9 15140 15127 5 375.8 22 1564 3468 2560 2570 5.3 15092 15092 0	58.5
72 1210 3474 2639 2671 17.8 14986 15111 5 620.6 41 1532 3470 2569 2587 9.8 15087 15091 2	199.9
100 1100 3467 2057 2705 23.5 14979 15008 5 1134.2 43 1373 3464 2598 2618 10.2 15035 15090 3 144 1092 3480 2665 2730 28.8 14958 15043 4 179.6 61 1244 3465 2625 2657 13 7 14050 15068 7	218.3
280 948 3463 2677 2804 47.6 14926 14924 -1 5801.2 160 1008 3461 2665 2738 29.7 14927 15002 0 2	2161.5
350 877 3458 2685 2843 56.8 14910 14979 -5 8702.5 219 983 3465 2673 2772 37.9 14928 14982 -3 3	3730.1
-766 -265 -2656 -2055 -2055 -2055 -905 -14904 -10 -1225.5 -292 -885 -3461 -2686 -2818 47.6 -14904 -14905 -7 -6 -528 -783 -3451 -684 -2868 -22 -14905 -14904 -14 -11 -11	6189.8
657 716 3451 2703 3002 94.5 14987 14944 -25 27575.9 509 787 3446 2689 2920 75.4 14900 14939 -21 17	7347.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9606.8
1316 379 3452 2745 3346 159.5 14869 14911 -78 90715.7 D862	
D858 0 1544 3456 2555 2555 0.0 15082 15082 0	0.0
0 1613 3464 2546 2546 0.0 15105 15105 0 0.0 45 1480 7458 2571 5.3 15073 15078 1	58.4
18 1615 3466 2547 2555 4.5 15109 15107 1 40.9 67 1277 3480 2660 15.2 15010 15063 3	488.8
35 1625 3468 2546 2562 8.8 15115 15109 3 155.0 90 1088 3460 2651 2691 19:0 14945 15041 2	787.0
53 1460 5465 2576 2000 15.2 15071 15104 4 544.7 135 1007 3459 2664 2725 25.7 14923 15005 0 1 106 1202 3472 2639 2686 23.6 14989 15067 5 1172.8 101 060 7459 2670 2754 75.2 14923 15005 0 1	1545.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25/4./
184 1042 3475 2670 2754 35.4 14946 15023 3 2876.4 430 84°1 3453 2686 2881 65.3 14909 14941 -17 12 245 1002 3474 2677 2787 43.7 14941 15003 1 4666 2	2630.0
295 965 3470 2680 2813 50.4 14935 14992 -2 6468.6	

D	Т	S	σt	ostp	ΣΔD	С	Cm	K	ΣΔΧ
D862	continued								
547	788	3452	2694	2942	80.0	14908	14934	-24	19831.5
666	725	3448	2700	3002	94.5	14902	14929	-32	28608.1
820	652	3449	2710	3083	112.3	14899	14923	-42	41823.6
1037	538	3448	2724	3196	135.2	14889	14917	-57	63143.2
1285	396	3451	2742	3329	158.0	14871	14910	-77	89582.5
D863									
0	1557	3449	2547	2547	0.0	15086	15086	0	0.0
22	1497	3447	2559	2569	5.4	15070	15078	1	59.7
44	1473	3451	2567	2587	10.7	15067	15073	2	232.2
66	1372	3434	2575	2605	15.7	15036	15066	3	511.0
88	1180	3465	2637	2677	20.1	14978	15051	3	845.6
132	1030	3457	2658	2718	27.0	14932	15019	2	1613.7
168	968	3457	2669	2745	32.2	14914	14998	-0	2393.7
254	895	3457	2681	2796	43.8	14901	14967	-6	4841.5
415	827	3450	2686	2874	64.6	14900	14941	-16	11.795.0
535	806	3449	2689	2931	80.0	14913	14933	-24	19105.0
654	764	3448	2694	2990	95.1	14916	14930	-31	28072.0
825	655	3449	2710	3085	115.4	14901	14925	-41	43063.2
1053	494	3448	2729	3210	138.9	14873	14917	-58	65168.1
1296	399	3452	2743	3335	160.5	14874	14909	-79	90540.5
1740	264	3460	2762	3557	193.8	14893	14902	-113	141032.0
D864									
0	1599	3482	2563	2563	0.0	15103	15103	0	0.0
25	1557	3479	2570	2581	5.8	15094	15098	2	73.0
49	1457	3471	2586	2608	11.2	15065	15089	3	271.4
74	1384	3473	2603	2636	16.4	15046	15078	4	592.0
123	1193	3469	2638	2693	25.5	14989	15054	4	1483.3
175	1085	3462	2653	2732	33.9	14958	15030	3	2740.0
225	1036	3462	2661	2763	41.5	14949	15013	2	4262.3
319	968	3462	2673	2817	55.0	14940	14992	-2	7945.9
416	873	3456	2684	2872	68.2	14918	14978	-6	12764.9
512	827	3454	2689	2921	80.6	14917	14966	-11	18514.7

APPENDIX III

THE POSSIBILITY OF FORMING EDDIES WHEN MEANDERS MEET A SLOPING BOTTOM TOPOGRAPHY

l would like to examine under what conditions meanders with a southwards phase velocity grow on the northern slope of a bathymetric feature like the Chatham Rise. The occurrence of these growing meanders then would provide a mechanism for forming the small eddies observed on the head of the Hikurangi Trench. Consider a meridional current flowing in a southerly direction with a velocity V, V being negative. For a homogeneous ocean the geostrophic current in this steady flow is given by

+ fV = g
$$\frac{\partial \eta}{\partial x}$$

where η is the surface elevation. Now suppose there is a barotropic perturbation having velocity components u, v (u positive to the east and v to the north) and an elevation h in the flow, with the cross-stream change in the perturbed quantities being small compared to the long-stream changes (i.e. the meanders are produced by a pulse which has $\partial/\partial x$ h, u, v, \neq o). We are going to examine what happens to a meander, which is generated near East Cape, when it meets the decreasing depth of the Chatham Rise; in this simple model the slope of the western side of the Hikurangi Trench will be neglected, i.e. $\partial D/\partial x = 0$. This model is similar to the two-layer model discussed by Stommel (1965), but with the slope of the bottom used as one stability criterion, rather than the surface velocity which, in Stommel's model, was related to the slope of the interface between the two layers (see Stommel 1965, p.129, p.196).

The perturbation components of the equations of motion, neglecting friction, may be written in this case as

$$(\frac{\partial}{\partial t} + V \frac{\partial}{\partial y}) u - f_V = 0 (\frac{\partial}{\partial t} + V \frac{\partial}{\partial y}) v + f_u = -g \frac{\partial h}{\partial y}$$

where it has been assumed that

$$x \frac{\partial \lambda}{\partial \Lambda} << \Lambda \frac{\partial \lambda}{\partial \Lambda}$$

and the perturbation continuity equation is

$$\left(\frac{\partial}{\partial t} + V \ \frac{\partial}{\partial y}\right)h + v \ \frac{\partial D}{\partial y} + h \ \frac{\partial V}{\partial y} + D \ \frac{\partial v}{\partial y} = 0$$

where D is the depth of the water. Assuming that the perturbed quantities have the form

$$e^{i(ly-\omega t)}$$
 e.g. $u = u_0 e^{i(ly-\omega t)}$

the above equations can be written as

 $(-i\omega + Vil) u - fv = 0$ (26)

$$(-i\omega + Vil) v + fu = -iglh$$
 (27)

$$(-i\omega + Vil)h + vK + hJ + Dilv = 0$$
(28)

where
$$K = \partial D / \partial y$$
, $J = \partial V / \partial y$ and $i = \sqrt{-1}$.

Multiplying equation 26 by $(-i\omega + Vi \ell)$ and adding equation 27 multiplied by f gives

$$u = -\frac{igflh}{B}$$

where $B = f^2 - \omega^2 - V^2 \ell^2 + 2 V \omega \ell$

Similarly, multiplying equation 27 by $(-i\omega + Vi\ell)$ and subtracting equation 26 multiplied by f, gives

$$v = \frac{g \ell h (V\ell - \omega)}{B}$$

Substituting for u and v in equation 28 we have

$$i(V\ell - \omega)h + \frac{g\ell h}{f^2} \frac{(V\ell - \omega)K}{(V\ell - \omega)^2} + hJ + \frac{i \frac{g}{f^2} D\ell^2 h}{f^2} \frac{(V\ell - \omega)}{(V\ell - \omega)^2} = 0$$

Now with $\omega = \theta + i\nu$, $\nabla \ell - \theta = \phi$, $\nabla \ell - \omega = \phi - i\nu$ the above equation becomes

$$i(\phi - iv)h + \frac{Kglh(\phi - iv)}{f^2 - \phi^2 + v^2 + 2iv\phi} + hJ + \frac{igDl^2h(\phi - iv)}{f^2 - \phi^2 + v^2 + 2iv\phi} = 0$$

Or i
$$(\Phi h A + 2v\Phi (vh + hJ) + gDl^2 h \phi - vKglh)$$

- $2v\Phi^2h + A(vh + hJ) + Kglh\Phi + gDl^2hv = 0$
where $A = f^2 - \Phi^2 + v^2$

For this relationship to be satisfied both the real and imaginary parts must be zero, i.e.

$$\Phi h A + 2 \upsilon \Phi (\upsilon h + hJ) + g D l^2 h \Phi - \upsilon K g l h = 0$$
$$- 2 \upsilon \Phi^2 h + A (\upsilon h + hJ) + K g l h \Phi + g D l^2 h \upsilon = 0$$

Looking, at the imaginary part we have

$$\Phi h (f^2 - \Phi^2 + v^2) + 2 v \Phi (vh + hJ) + gDl^2 \Phi h - vKglh = 0$$

and for $h \neq o$ this reduces to

$$3v^2\Phi + v(2\Phi J - Kql) + qDl^2\Phi + \Phi(f^2 - \Phi^2) = 0$$

which has solutions

$$v = \frac{-2\phi J + Kg \ell \pm \sqrt{4}\phi^2 J^2 + K^2 g^2 \ell^2 - 4Kg \ell \phi J - 12\phi (gD\ell^2 \phi + \phi (f^2 - \phi^2))}{6 \phi}$$

The continuity equation for steady flow is

$$D \frac{\partial V}{\partial Y} + V \frac{\partial D}{\partial Y} \hat{} 0 \quad \text{i.e.} \quad K = -\frac{D}{V} J$$
 (29)

Substituting for J in the above equation gives

$$\begin{split} \psi &= \frac{1}{6\Phi} \left[\frac{KV}{D} \left(2\phi + \frac{Dg\ell}{V} \right) \pm \sqrt{F^2 - 12\phi^2} \left(gD\ell^2 + f^2 - \phi^2 \right) \right] \\ &= \frac{1}{6\Phi} \left[F \pm \sqrt{F^2 - 12\phi^2} \left(gD\ell^2 + f^2 - \phi^2 \right) \right] \end{split} (30) \\ &\text{where } F = \frac{KV}{D} \left(2\phi + \frac{Dg\ell}{V} \right) \end{split}$$

For ν positive the meander grows with time. In the region of interest, the head of the Hikurangi Trench, V is negative and K is positive. Taking & negative, (i.e. the meander travelling southward) if $||v_{\&}| > ||\circ||$

then
$$\Phi = \nabla \ell - \Theta > 0$$

$$F = \frac{KV}{D} \left(2\Phi + \frac{Dgl}{V}\right)$$

is negative and equation 30 has the form

$$v = a \left(1 \pm \sqrt{1 - \frac{b}{F^2}}\right)$$

where $a = \frac{F}{6\Phi} < 0$
 $b = 12 \Phi^2 \left[f^2 + \ell^2 \left(gD - \left(V - \frac{\Theta}{\ell}\right)^2\right)\right]$

As $|v| > |\frac{\Theta}{\lambda}|$ and $gD > v^2$ (i.e. for $g = 10 \text{ m s}^{-1}$, and $D = 10^3 \text{ m}$, V would have to be greater than 100 m s^{-1} for this inequality not to hold), b is positive. Therefore any real values of ν are negative and the corresponding meanders decrease in size. The meanders decrease in size if their absolute phase velocity is less than the absolute mean current velocity.

For the case with the absolute phase velocity of the meanders greater than the absolute mean current velocity, Φ is negative,

$$v = \frac{F}{6\Phi} \left(1 \pm \sqrt{1 - \frac{b}{F^2}}\right)$$

and at least one value of ν is positive if F is negative, i.e. for K positive the meanders grow if

D == 0

$$\left|\frac{\mathrm{Dg}\,\ell}{\mathrm{V}}\right| > |2\,\Phi|$$

or $\left|\frac{\mathrm{Dg}\,\ell}{\mathrm{V}}\right| > 2 |\mathrm{V}-\mathrm{c}|$ where $\mathrm{C} = \frac{\mathrm{O}}{\mathrm{t}}$

For long waves the phase velocity C_0 is given by $C_0\,^2$ = g D and the above condition becomes

$$\left|\frac{C_0^2}{V}\right| > \left|2 \left(V - c\right)\right|$$

or, as |c| > |V|, a condition for the meanders to grow on a bottom sloping upwards in the direction of the meanders is for

$$\left|\frac{C_0^2}{V}\right| > 2 |c|$$

Instead of evaluating equation 30 in detail we will examine the relative magnitude of the term h $\partial V/\partial y$ in the perturbed continuity equation to the terms [A] : V $\partial h/\partial y$, [B] : v $\partial D/\partial y$, [C] : D $\partial v/\partial y$.

The relative magnitude of the term h $\partial V/\partial y$ to these terms are

$$\begin{bmatrix} A \end{bmatrix} \quad \frac{hVK}{DV\frac{\partial}{\partial Y}} \stackrel{a}{=} \frac{K}{\ell D} \stackrel{a}{=} \frac{10^{-5}}{\ell}$$
$$\begin{bmatrix} B \end{bmatrix} \quad \frac{hVK}{DvK} \stackrel{a}{=} \frac{hV}{Dv} \stackrel{a}{=} \frac{h}{v} 10^{-3}$$
$$\begin{bmatrix} C \end{bmatrix} \quad \frac{hVK}{D^2 \frac{\partial}{\partial y}} = \frac{hVK}{D^2 \frac{\ell}{\ell v}} = \frac{h}{\ell v} 10^{-4}$$

where extreme values for the region off the east coast of New Zealand of V = 1 m s⁻¹, D = 10^3 m, K = 10^{-2} have been used to make the term hVK/D large. For the extreme value of h = 0.5 m, the term h ∂ V/ ∂ y is at least as large as one of the others if either

$$\ell \leq 10^{-5} \text{m}^{-1}$$
 or $\mathbf{v} \leq 5 \times 10^{-4} \text{m s}^{-1}$.

Of these, the former is the most likely (i.e. ℓ = 10⁻⁵ m⁻¹) and then the terms in the perturbation continuity equation have the values

h
$$\frac{\partial V}{\partial y} = 5 \times 10^{-6}$$
, $V \frac{\partial h}{\partial y} = -5 \times 10^{-6}$
 $v \frac{\partial D}{\partial y} = -10^{-2} xv$, $D \frac{\partial V}{\partial y} = -10^{-2}$

i.e. neither the first or second terms would be significant. Therefore taking

$$l \leq 10^{-5} \text{ m}$$

i.e. the scale of the motion must be less than 600 km (approx.) (or this scale is small compared to the scale of the bathymetry), the term h $\partial V/\partial y$ can be neglected and the perturbation continuity equation can be written as

$$(\frac{\partial}{\partial t} + V \frac{\partial}{\partial y})h + v \frac{\partial D}{\partial y} + D \frac{\partial v}{\partial y} = 0$$

which, for perturbed quantities of the form e $i(ly - \omega t)$, reduces to

$$(-i\omega + Vil)h + Kv + i l D v = 0$$

Substituting for u, v, (from p.94) in this equation we have

$$i(V\ell - \omega)h + \frac{K\ell g (V\ell - \omega)h}{B} + \frac{i\ell^2 Dg (V\ell - \omega)h}{B} = 0$$

where $B = f^2 - \omega^2 - V^2 \ell^2 + 2 \omega V \ell$

If $vl \neq \omega$ and $h \neq 0$ we have

$$(f^2 - \omega^2 - V^2 l^2 + 2 V \omega l) + l^2 Dg - i K l g = 0$$

Substituting $\omega = \Theta + i\nu$, $\ell = m + in$

i.e. ω and ℓ are complex, gives

$$f^{2} - \Theta^{2} + \psi^{2} - \nabla^{2} m^{2} + \nabla^{2} n^{2} + 2 \nabla \Theta m - 2 \nabla \nu n + m^{2} Dg - n^{2} Dg + Kng$$

+ i (-2 \Overline \nu - 2 \Vee \nu + 2 \Vee \nu + 2 \Vee \nu + 2 m \Dg - m Kg) = 0

For this equation to be satisfied, both the real and imaginary parts must be zero, i.e.

$$Kng + f^{2} - \nabla^{2}m^{2} - \Theta^{2} + \nabla^{2} + \nabla^{2}n^{2} + 2\nabla\Theta m - 2\nabla\nu n + (m^{2} - n^{2})Dg = 0$$
(31)

and

$$2 Vvm + 2 V\Theta n + 2 mn Dg - m Kg - 2 \Theta v - 2 V^2mn = 0$$
(32)

For the case n = o, the above equations reduce to

$$f^{2} - V^{2}m^{2} - \Theta^{2} + v^{2} + 2V\Theta m + m^{2}Dg = 0$$
(33)

$$-2 v \Theta + 2 V vm - Kmg = 0$$
(34)

From equation 34 we have

$$v = \frac{Kgm}{2(Vm-\Theta)} = \frac{Kg}{2(V-C)}$$

i.e. for a meander travelling slower than the mean current, the meander grows with time if the mean current velocity and the slope of the sea bottom have the same signs and decreases with time if they have opposite signs. For a meander travelling faster than the mean current, the meander grows with time if the slope of the sea bottom and the meander velocity have opposite signs (i.e. a meander travelling into shallower water) and decreases with time if they have the same signs. If the sea floor is flat the meanders do not grow with time.

For the case $\nu = 0$, equation 32 reduces to

$$2 V \Theta n + 2 mn Dg - m Kg - 2 V^2 mn = 0$$

$$n = \frac{m Kg}{2V\Theta + 2m Dg - 2V^2 m}$$

$$= \frac{K}{2 VC + 2 Dg - 2 V^2} = \frac{Kg}{2 VC + 2 C_0^2 - 2 V^2}$$

If the mean current speed is greater than the long wave speed (i.e. in very shallow water) and the phase speed of the meanders is in the opposite direction to the mean current velocity, the meanders decrease in space if they travel into shallower water, and grow in space if they travel into deeper water. For the usual case, where the long wave speed is greater than the mean current speed, and the current and meander velocities are in the same direction, the meanders grow in space if they travel into shallower water and decrease in space if they travel into deeper water. Because the East Cape Current flows southwards into the head of the Hikurangi Trench, where the slope of the bottom is positive, any southwards directed meanders formed will grow with time if the absolute meander velocity is greater than the mean current velocity and the scale of the meanders is such that

 $\left|\frac{K}{k_{D}}\right| << 1.$

In this case, as the meanders are travelling into shallower water and are in the same direction as the mean current, they will also grow in space.

If the scale of the meanders is such that

 $\left|\frac{K}{2D}\right| \leq 1$,

for the case in the Hikurangi Trench, where K is positive and V and ℓ are negative, the meanders will grow with time if the relationship

$$\left|\frac{C_0^2}{V}\right| > 2 |C|$$

holds, where V is the mean current velocity, C_0 the long wave phase speed and C the speed of the meanders.

The above analysis shows that one possible mechanism for the formation of the eddies off the east coast of New Zealand is for meanders in the flow generated by an increased transport of water around East Cape to grow in size and form eddies as they travel into shallower water in the head of the Hikurangi Trench. At present there have been no measurements from which the presence, or otherwise, of meanders in the East Cape Current can be shown and until such measurements are made the role, if any, of the above mechanism cannot be evaluated.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

A. R. SHEARER, GOVERNMENT PRINTER, WELLINGTON, NEW ZEALAND-1975

